ID

45890

Descrição

Principal Investigator: Rex Chisholm, PhD, Northwestern University MeSH: Arthritis, Rheumatoid https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000983 Rheumatoid arthritis (RA) is the most common autoimmune inflammatory arthritis worldwide and affects 1.3 million adults in the USA. It has previously been studied using phenotype algorithms to identify electronic health records (EHR) case cohorts. Early genetic studies of EHR-linked cohorts of RA patients have been replicated in known associations. Further development of collections of EHR-linked cohorts for RA and other phenotypes may enable not only enhanced understanding of disease risks but also the investigation of outcomes and treatment responses.

Link

dbGaP study = phs000983

Palavras-chave

  1. 01/12/2023 01/12/2023 - Simon Heim
Titular dos direitos

Rex Chisholm, PhD, Northwestern University

Transferido a

1 de dezembro de 2023

DOI

Para um pedido faça login.

Licença

Creative Commons BY 4.0

Comentários do modelo :

Aqui pode comentar o modelo. Pode comentá-lo especificamente através dos balões de texto nos grupos de itens e itens.

Comentários do grupo de itens para :

Comentários do item para :


Sem comentários

Para descarregar formulários, precisa de ter uma sessão iniciada. Por favor faça login ou registe-se gratuitamente.

dbGaP phs000983 Pharmacogenomics of Rheumatoid Arthritis Therapy

Eligibility Criteria

Inclusion and exclusion criteria
Descrição

Inclusion and exclusion criteria

Alias
UMLS CUI [1,1]
C1512693
UMLS CUI [1,2]
C0680251
Subjects were determined using an electronic algorithm deployed with an existing EMR. The algorithm used for identifying study subjects in the electronic health record is described in the following article: RJ Carroll et al. Portability of an algorithm to identify rheumatoid arthritis in electronic health records. JAMIA, 2012 Jun;19(e1):e162-9. Epub 2012 Feb 28. PMID: 22374935.
Descrição

Subjects were determined using an electronic algorithm deployed with an existing EMR. The algorithm used for identifying study subjects in the electronic health record is described in the following article: RJ Carroll et al. Portability of an algorithm to identify rheumatoid arthritis in electronic health records. JAMIA, 2012 Jun;19(e1):e162-9. Epub 2012 Feb 28. PMID: 22374935.

Tipo de dados

boolean

Alias
UMLS CUI [1,1]
C1148554
UMLS CUI [1,2]
C0002045
UMLS CUI [1,3]
C2362543
UMLS CUI [2,1]
C0002045
UMLS CUI [2,2]
C0681850
UMLS CUI [2,3]
C0205396
UMLS CUI [2,4]
C2362543
UMLS CUI [2,5]
C1704324
UMLS CUI [2,6]
C0003873

Similar models

Eligibility Criteria

Name
Tipo
Description | Question | Decode (Coded Value)
Tipo de dados
Alias
Item Group
Inclusion and exclusion criteria
C1512693 (UMLS CUI [1,1])
C0680251 (UMLS CUI [1,2])
Subjects were determined using an electronic algorithm deployed with an existing EMR. The algorithm used for identifying study subjects in the electronic health record is described in the following article: RJ Carroll et al. Portability of an algorithm to identify rheumatoid arthritis in electronic health records. JAMIA, 2012 Jun;19(e1):e162-9. Epub 2012 Feb 28. PMID: 22374935.
Item
Subjects were determined using an electronic algorithm deployed with an existing EMR. The algorithm used for identifying study subjects in the electronic health record is described in the following article: RJ Carroll et al. Portability of an algorithm to identify rheumatoid arthritis in electronic health records. JAMIA, 2012 Jun;19(e1):e162-9. Epub 2012 Feb 28. PMID: 22374935.
boolean
C1148554 (UMLS CUI [1,1])
C0002045 (UMLS CUI [1,2])
C2362543 (UMLS CUI [1,3])
C0002045 (UMLS CUI [2,1])
C0681850 (UMLS CUI [2,2])
C0205396 (UMLS CUI [2,3])
C2362543 (UMLS CUI [2,4])
C1704324 (UMLS CUI [2,5])
C0003873 (UMLS CUI [2,6])

Use este formulário para feedback, perguntas e sugestões de aperfeiçoamento.

Campos marcados com * são obrigatórios.

Do you need help on how to use the search function? Please watch the corresponding tutorial video for more details and learn how to use the search function most efficiently.

Watch Tutorial