ID

45890

Description

Principal Investigator: Rex Chisholm, PhD, Northwestern University MeSH: Arthritis, Rheumatoid https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000983 Rheumatoid arthritis (RA) is the most common autoimmune inflammatory arthritis worldwide and affects 1.3 million adults in the USA. It has previously been studied using phenotype algorithms to identify electronic health records (EHR) case cohorts. Early genetic studies of EHR-linked cohorts of RA patients have been replicated in known associations. Further development of collections of EHR-linked cohorts for RA and other phenotypes may enable not only enhanced understanding of disease risks but also the investigation of outcomes and treatment responses.

Lien

dbGaP study = phs000983

Mots-clés

  1. 01/12/2023 01/12/2023 - Simon Heim
Détendeur de droits

Rex Chisholm, PhD, Northwestern University

Téléchargé le

1 décembre 2023

DOI

Pour une demande vous connecter.

Licence

Creative Commons BY 4.0

Modèle Commentaires :

Ici, vous pouvez faire des commentaires sur le modèle. À partir des bulles de texte, vous pouvez laisser des commentaires spécifiques sur les groupes Item et les Item.

Groupe Item commentaires pour :

Item commentaires pour :


Aucun commentaire

Vous devez être connecté pour pouvoir télécharger des formulaires. Veuillez vous connecter ou s’inscrire gratuitement.

dbGaP phs000983 Pharmacogenomics of Rheumatoid Arthritis Therapy

Eligibility Criteria

Inclusion and exclusion criteria
Description

Inclusion and exclusion criteria

Alias
UMLS CUI [1,1]
C1512693
UMLS CUI [1,2]
C0680251
Subjects were determined using an electronic algorithm deployed with an existing EMR. The algorithm used for identifying study subjects in the electronic health record is described in the following article: RJ Carroll et al. Portability of an algorithm to identify rheumatoid arthritis in electronic health records. JAMIA, 2012 Jun;19(e1):e162-9. Epub 2012 Feb 28. PMID: 22374935.
Description

Subjects were determined using an electronic algorithm deployed with an existing EMR. The algorithm used for identifying study subjects in the electronic health record is described in the following article: RJ Carroll et al. Portability of an algorithm to identify rheumatoid arthritis in electronic health records. JAMIA, 2012 Jun;19(e1):e162-9. Epub 2012 Feb 28. PMID: 22374935.

Type de données

boolean

Alias
UMLS CUI [1,1]
C1148554
UMLS CUI [1,2]
C0002045
UMLS CUI [1,3]
C2362543
UMLS CUI [2,1]
C0002045
UMLS CUI [2,2]
C0681850
UMLS CUI [2,3]
C0205396
UMLS CUI [2,4]
C2362543
UMLS CUI [2,5]
C1704324
UMLS CUI [2,6]
C0003873

Similar models

Eligibility Criteria

Name
Type
Description | Question | Decode (Coded Value)
Type de données
Alias
Item Group
Inclusion and exclusion criteria
C1512693 (UMLS CUI [1,1])
C0680251 (UMLS CUI [1,2])
Subjects were determined using an electronic algorithm deployed with an existing EMR. The algorithm used for identifying study subjects in the electronic health record is described in the following article: RJ Carroll et al. Portability of an algorithm to identify rheumatoid arthritis in electronic health records. JAMIA, 2012 Jun;19(e1):e162-9. Epub 2012 Feb 28. PMID: 22374935.
Item
Subjects were determined using an electronic algorithm deployed with an existing EMR. The algorithm used for identifying study subjects in the electronic health record is described in the following article: RJ Carroll et al. Portability of an algorithm to identify rheumatoid arthritis in electronic health records. JAMIA, 2012 Jun;19(e1):e162-9. Epub 2012 Feb 28. PMID: 22374935.
boolean
C1148554 (UMLS CUI [1,1])
C0002045 (UMLS CUI [1,2])
C2362543 (UMLS CUI [1,3])
C0002045 (UMLS CUI [2,1])
C0681850 (UMLS CUI [2,2])
C0205396 (UMLS CUI [2,3])
C2362543 (UMLS CUI [2,4])
C1704324 (UMLS CUI [2,5])
C0003873 (UMLS CUI [2,6])

Utilisez ce formulaire pour les retours, les questions et les améliorations suggérées.

Les champs marqués d’un * sont obligatoires.

Do you need help on how to use the search function? Please watch the corresponding tutorial video for more details and learn how to use the search function most efficiently.

Watch Tutorial