ID

45875

Descripción

Principal Investigator: Lynne Wagenknecht, Wake Forest University School of Medicine, University of North Carolina, Winston-Salem, NC, USA MeSH: Insulin Resistance https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001008 TThe IRAS Family Study was a family study designed to examine the genetic and epidemiologic basis of glucose homeostasis traits and abdominal adiposity. Briefly, self-reported Mexican pedigrees were recruited in San Antonio, TX and San Luis Valley, CO. Probands with large families were recruited from the initial non-family-based IRAS Study, which was modestly enriched for impaired glucose tolerance and T2D. GUARDIAN includes 1,024 individuals in 88 pedigrees from the IRAS Family Study. Insulin sensitivity was obtained by FSIGT.

Link

dbGaP study = phs001008

Palabras clave

  1. 31/10/23 31/10/23 - Simon Heim
Titular de derechos de autor

Lynne Wagenknecht, Wake Forest University School of Medicine, University of North Carolina, Winston-Salem, NC, USA

Subido en

31 de octubre de 2023

DOI

Para solicitar uno, por favor iniciar sesión.

Licencia

Creative Commons BY 4.0

Comentarios del modelo :

Puede comentar sobre el modelo de datos aquí. A través de las burbujas de diálogo en los grupos de elementos y elementos, puede agregar comentarios específicos.

Comentarios de grupo de elementos para :

Comentarios del elemento para :

Para descargar modelos de datos, debe haber iniciado sesión. Por favor iniciar sesión o Registrate gratis.

dbGaP phs001008 GUARDIAN: IRAS FAMILY STUDY (IRASFS)

The dataset provides insulin sensitivity and metabolic clearance values, BMI measurements and sociodemographic information (i.e. age/gender) of participants.

pht005110
Descripción

pht005110

Alias
UMLS CUI [1,1]
C3846158
Famiy ID
Descripción

FAMILY_ID

Tipo de datos

text

Alias
UMLS CUI [1,1]
C3669174
Subject ID
Descripción

SUBJECT_ID

Tipo de datos

text

Alias
UMLS CUI [1,1]
C2348585
Sex
Descripción

SEX

Tipo de datos

text

Alias
UMLS CUI [1,1]
C0079399
Age (years)
Descripción

Age

Tipo de datos

text

Unidades de medida
  • Years
Alias
UMLS CUI [1,1]
C0001779
Years
Body Mass Index (Kg/M^2)
Descripción

BMI

Tipo de datos

text

Unidades de medida
  • kg/m2
Alias
UMLS CUI [1,1]
C1305855
kg/m2
Center
Descripción

Center

Tipo de datos

text

Alias
UMLS CUI [1,1]
C1301943
UMLS CUI [1,2]
C0600091
Insulin Sensitivity Index (x.0001/min/mIU/1ml-1)
Descripción

SI

Tipo de datos

text

Alias
UMLS CUI [1,1]
C5212332
Metabolic Clearance Rate of Insulin (L/min)
Descripción

MCRI

Tipo de datos

text

Unidades de medida
  • L/min
Alias
UMLS CUI [1,1]
C0025515
UMLS CUI [1,2]
C0021641
L/min
Participant's ethnicity
Descripción

ETHNICITY

Tipo de datos

string

Alias
UMLS CUI [1,1]
C5441552

Similar models

The dataset provides insulin sensitivity and metabolic clearance values, BMI measurements and sociodemographic information (i.e. age/gender) of participants.

Name
Tipo
Description | Question | Decode (Coded Value)
Tipo de datos
Alias
Item Group
pht005110
C3846158 (UMLS CUI [1,1])
FAMILY_ID
Item
Famiy ID
text
C3669174 (UMLS CUI [1,1])
SUBJECT_ID
Item
Subject ID
text
C2348585 (UMLS CUI [1,1])
Item
Sex
text
C0079399 (UMLS CUI [1,1])
Code List
Sex
CL Item
Male (1)
C0086582 (UMLS CUI [1,1])
CL Item
Female (2)
C0086287 (UMLS CUI [1,1])
Age
Item
Age (years)
text
C0001779 (UMLS CUI [1,1])
BMI
Item
Body Mass Index (Kg/M^2)
text
C1305855 (UMLS CUI [1,1])
Item
Center
text
C1301943 (UMLS CUI [1,1])
C0600091 (UMLS CUI [1,2])
Code List
Center
CL Item
San Luis Valley (0)
CL Item
San Antonio (1)
SI
Item
Insulin Sensitivity Index (x.0001/min/mIU/1ml-1)
text
C5212332 (UMLS CUI [1,1])
MCRI
Item
Metabolic Clearance Rate of Insulin (L/min)
text
C0025515 (UMLS CUI [1,1])
C0021641 (UMLS CUI [1,2])
ETHNICITY
Item
Participant's ethnicity
string
C5441552 (UMLS CUI [1,1])

Utilice este formulario para comentarios, preguntas y sugerencias.

Los campos marcados con * son obligatorios.

Do you need help on how to use the search function? Please watch the corresponding tutorial video for more details and learn how to use the search function most efficiently.

Watch Tutorial