ID

45683

Description

Principal Investigator: Neil E. Caporaso, MD, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA MeSH: Leukemia, Lymphocytic, Chronic, B-Cell,Hodgkin Disease,Lymphoma, Non-Hodgkin,Waldenstrom Macroglobulinemia,Leukemia, Hairy Cell,Leukemia, Myeloid, Acute,Leukemia, Myelomonocytic, Juvenile https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001219 We have been conducting genetic studies on families at high risk of different hematologic malignancies, in order to define the related tumors in the families, define precursor and other related conditions, and map and identify susceptibility genes. We have focused mainly on four types of lymphoid malignancies: chronic lymphocytic leukemia (CLL), Hodgkin lymphoma (HL), non-Hodgkin lymphoma (NHL), and Waldenström macroglobulinemia (WM). A few families with a rare lymphoma subtype, hairy cell leukemia (HCL) are included. In addition, single large pedigrees with acute myeloid leukemia (AML), and juvenile myelomocytic leukemia (JMML) are included. Families are ascertained for having at least two patients with the same hematologic malignancy and are classified by the type of malignancy that predominates in the family. Multiple types of lymphoid malignancies are often found in the same family. Other data has shown that these conditions aggregate together in families. Verification of cancer diagnoses is obtained through medical records, pathology reports, and flow cytometry. Family members with precursor traits are also included, monoclonal B-cell lymphocytosis (MBL) in CLL families and IgM monoclonal gammopathy of undetermined significance (MGUS) in WM families.

Lien

dbGaP study = phs001219

Mots-clés

  1. 26/4/23 26/4/23 - Simon Heim
Détendeur de droits

Neil E. Caporaso, MD, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA

Téléchargé le

26 de abril de 2023

DOI

Pour une demande vous connecter.

Licence

Creative Commons BY 4.0

Modèle Commentaires :

Ici, vous pouvez faire des commentaires sur le modèle. À partir des bulles de texte, vous pouvez laisser des commentaires spécifiques sur les groupes Item et les Item.

Groupe Item commentaires pour :

Item commentaires pour :


Aucun commentaire

Vous devez être connecté pour pouvoir télécharger des formulaires. Veuillez vous connecter ou s’inscrire gratuitement.

dbGaP phs001219 Detection of Genes Predisposing to Hematologic Malignancies

This sample attributes table contains sample IDs, histological type, body site, analyte type, and tumor status.

pht007861
Description

pht007861

Alias
UMLS CUI [1,1]
C3846158
De-identified Sample ID
Description

SAMPLE_ID

Type de données

string

Alias
UMLS CUI [1,1]
C4684638
UMLS CUI [1,2]
C1299222
Histological Type
Description

HISTOLOGICAL_TYPE

Type de données

string

Alias
UMLS CUI [1,1]
C0449574
Body site where sample was collected
Description

BODY_SITE

Type de données

string

Alias
UMLS CUI [1,1]
C0449705
Analyte Type
Description

ANALYTE_TYPE

Type de données

string

Alias
UMLS CUI [1,1]
C4744818
Tumor status
Description

IS_TUMOR

Type de données

string

Alias
UMLS CUI [1,1]
C0475752

Similar models

This sample attributes table contains sample IDs, histological type, body site, analyte type, and tumor status.

Name
Type
Description | Question | Decode (Coded Value)
Type de données
Alias
Item Group
pht007861
C3846158 (UMLS CUI [1,1])
SAMPLE_ID
Item
De-identified Sample ID
string
C4684638 (UMLS CUI [1,1])
C1299222 (UMLS CUI [1,2])
HISTOLOGICAL_TYPE
Item
Histological Type
string
C0449574 (UMLS CUI [1,1])
BODY_SITE
Item
Body site where sample was collected
string
C0449705 (UMLS CUI [1,1])
ANALYTE_TYPE
Item
Analyte Type
string
C4744818 (UMLS CUI [1,1])
IS_TUMOR
Item
Tumor status
string
C0475752 (UMLS CUI [1,1])

Utilisez ce formulaire pour les retours, les questions et les améliorations suggérées.

Les champs marqués d’un * sont obligatoires.

Do you need help on how to use the search function? Please watch the corresponding tutorial video for more details and learn how to use the search function most efficiently.

Watch Tutorial