ID

45543

Beschrijving

Disclaimer: Der „GECCO - German Corona Consensus - Covid-19 Research-Dataset“ Inhalt, der auf dem Portal für medizinische Datenmodelle (MDM Portal) zu finden ist, ersetzt nicht den GECCO Datensatz auf simplifier.net. Für die Nutzung von GECCO-FHIR-Profilen verwenden Sie bitte die auf https://simplifier.net/ForschungsnetzCovid-19/ verfügbaren Profile. Der FHIR-Download auf MDM erzeugt lediglich eine FHIR-Fragebogenresource. Ziel Überarbeitung August 2021: höhere Kompatibilität mit der NUM-COMPASS-App bzw. der Schnittstelle zur zentralen Datenbank; Zwischenstand, gewisse Module sind noch nicht kompatibel mit der Schnittstelle (u.a. Medikation und Laborwerte; Beatmungstherapie ist aktuell doppelt hinterlegt) This version of the GECCO logical model is based on https://art-decor.org/art-decor/decor-datasets--covid19f-, and the implementation for REDCap by the University of Tübingen (3.3.2021), partially updated with https://simplifier.net/guide/GermanCoronaConsensusDataSet-ImplementationGuide/Home information. For actual use of FHIR profiles, please use the actual profiles available on https://simplifier.net/ForschungsnetzCovid-19/ResearchDatasetGECCO/~overview (FHIR download on MDM is only a FHIR questionnaire resource). This version is not compatible with the REDCap to FHIR GECCO converter of the University of Tübingen. It aims at a higher compatibility with the app generated for the NUM-COMPASS project (conversion to COMPASS-compatible FHIR questionnaire necessary) and from there with the central platform of the NUM-CODEX project. A few modules are not yet compatible (e.g. Medication and lab values; ventilation is currently double). Official German text from http://cocos.team/datasets.html: Zur Bewältigung der aktuellen Pandemie und der damit einhergehenden Behandlung von Patienten fördert das Bundesministerium für Bildung und Forschung (BMBF) ein nationales Netzwerk der Universitätsmedizin im Kampf gegen COVID-19. Unter anderem soll das Netzwerk die Daten der behandelten COVID-19 Patienten systematisch erfassen und bündeln. Die Forschenden sollen die Behandlung der COVID-19-Patienten standardisiert erheben, verfolgen und analysieren. Die hohe Bedrohungslage hat zu intensiver wissenschaftlicher Aktivität zu COVID-19 geführt, wozu zahlreiche regionale, nationale und internationale epidemiologische Erhebungen und Registerstudien zählen. Der Konsensusdatensatz gibt der Wissenschaft um COVID-19 eine gemeinsame Sprache und Arbeitsgrundlage. Inofficial translation: In order to cope with the current pandemic and the associated treatment of patients, the Federal Ministry of Education and Research (BMBF) is funding a national network of university medicine in the fight against COVID-19. Among other things, the network will systematically collect and bundle the data of the treated COVID-19 patients. The researchers are to collect, track and analyze the treatment of COVID-19 patients in a standardized way. The high threat level has led to intensive scientific activity on COVID-19, including numerous regional, national and international epidemiological surveys and register studies. The consensus data set provides a common language and working basis for the science around COVID-19.

Link

https://simplifier.net/ForschungsnetzCovid-19/

Trefwoorden

  1. 29-09-20 29-09-20 - Sarah Riepenhausen
  2. 29-09-20 29-09-20 - Sarah Riepenhausen
  3. 09-10-20 09-10-20 -
  4. 28-10-20 28-10-20 -
  5. 13-01-21 13-01-21 - Sarah Riepenhausen
  6. 03-02-21 03-02-21 - Sarah Riepenhausen
  7. 03-02-21 03-02-21 - Sarah Riepenhausen
  8. 25-08-21 25-08-21 - Sarah Riepenhausen
  9. 02-09-21 02-09-21 - Sarah Riepenhausen
  10. 06-09-21 06-09-21 - Sarah Riepenhausen
  11. 05-01-23 05-01-23 - Sarah Riepenhausen
Houder van rechten

Nationales Forschungsnetzwerk der Universitätsmedizin zu Covid-19

Geüploaded op

5 januari 2023

DOI

Voor een aanvraag inloggen.

Licentie

Creative Commons BY 4.0

Model Commentaren :

Hier kunt u commentaar leveren op het model. U kunt de tekstballonnen bij de itemgroepen en items gebruiken om er specifiek commentaar op te geven.

Itemgroep Commentaren voor :

Item Commentaren voor :


Geen commentaren

U moet ingelogd zijn om formulieren te downloaden. AUB inloggen of schrijf u gratis in.

GECCO - German Corona Consensus - Covid-19 Research-Dataset

Studieneinschluss/Einschlusskriterien

Studieneinschluss/Einschlusskriterien
Beschrijving

Studieneinschluss/Einschlusskriterien

Alias
UMLS CUI-1
C1512693
UMLS CUI-2
C1516637
Bestätigte Covid-19-Diagnose als Hauptursache für Aufnahme in Studie
Beschrijving

FHIR-Mapping: Observation GECCO

Datatype

text

Alias
UMLS CUI [1,1]
C1512693
UMLS CUI [1,2]
C5203670
UMLS CUI [1,3]
C0008976
CompassGeccoItem
studyEnrollmentOrInclusionCriteria.enrolledWithCovid19DiagnosisAsMainReason
Hat der Patient an einer oder mehreren interventionellen Klinischen Studie teilgenommen?
Beschrijving

FHIR-Mapping: Observation Wenn ja, bitte EudraCT- oder NCT-Nummer angeben (falls vorhanden) GECCO

Datatype

text

Alias
UMLS CUI [1,1]
C2348568
UMLS CUI [1,2]
C3274035
CompassGeccoItem
studyEnrollmentOrInclusionCriteria.hasPatientParticipatedInOneOrMoreInterventionalClinicalTrials
Wenn ja, bitte EudraCT- oder NCT-Nummer angeben (falls vorhanden)
Beschrijving

Hinweis: Dieses Item gibt es nicht in REDCap oder art-decor. Es wird in art-decor und simplifier darauf hingewiesen, dass bei Studienteilnahme diese Studienidentifier angegeben werden sollen, falls vorhanden.

Datatype

text

Alias
UMLS CUI [1]
C3274381

Similar models

Studieneinschluss/Einschlusskriterien

Name
Type
Description | Question | Decode (Coded Value)
Datatype
Alias
Item Group
Studieneinschluss/Einschlusskriterien
C1512693 (UMLS CUI-1)
C1516637 (UMLS CUI-2)
Item
Bestätigte Covid-19-Diagnose als Hauptursache für Aufnahme in Studie
text
C1512693 (UMLS CUI [1,1])
C5203670 (UMLS CUI [1,2])
C0008976 (UMLS CUI [1,3])
studyEnrollmentOrInclusionCriteria.enrolledWithCovid19DiagnosisAsMainReason (CompassGeccoItem)
Code List
Bestätigte Covid-19-Diagnose als Hauptursache für Aufnahme in Studie
CL Item
Ja (1)
410605003 (SNOMED CT[1])
C1705108 (UMLS CUI-1)
Y (v2-0136)
CL Item
Nein (0)
410594000 (SNOMED CT[1])
C1298908 (UMLS CUI-1)
N (v2-0136)
CL Item
Unbekannt (9)
261665006 (SNOMED CT[1])
unknown (2.16.840.1.113883.4.642.4.1048)
C0439673 (UMLS CUI-1)
asked-unknown (data-absent-reason)
Item
Hat der Patient an einer oder mehreren interventionellen Klinischen Studie teilgenommen?
text
C2348568 (UMLS CUI [1,1])
C3274035 (UMLS CUI [1,2])
studyEnrollmentOrInclusionCriteria.hasPatientParticipatedInOneOrMoreInterventionalClinicalTrials (CompassGeccoItem)
Code List
Hat der Patient an einer oder mehreren interventionellen Klinischen Studie teilgenommen?
CL Item
Ja (1)
C1705108 (UMLS CUI-1)
373066001 (SNOMED CT[1])
CL Item
Nein (0)
C1298908 (UMLS CUI-1)
373067005 (SNOMED CT[1])
CL Item
Unbekannt (9)
C0439673 (UMLS CUI-1)
261665006 (SNOMED CT[1])
CL Item
Andere (8)
C0205394 (UMLS CUI-1)
74964007 (SNOMED CT[1])
CL Item
N.A. (7)
C1272460 (UMLS CUI-1)
385432009 (SNOMED CT[1])
NCT/EudraCT-Nummer
Item
Wenn ja, bitte EudraCT- oder NCT-Nummer angeben (falls vorhanden)
text
C3274381 (UMLS CUI [1])

Do you need help on how to use the search function? Please watch the corresponding tutorial video for more details and learn how to use the search function most efficiently.

Watch Tutorial