ID

46133

Description

Principal Investigator: Theodora S. Ross, MD, PhD, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA, and Department of Cancer Genetics, UT Southwestern Medical Center, Dallas, TX, USA MeSH: Neoplasms,Breast Neoplasms,Ovarian Neoplasms,Peritoneal Neoplasms,Skin Neoplasms,Esophageal Neoplasms,Thyroid Neoplasms,Urinary Bladder Neoplasms,Endometrial Neoplasms,Fallopian Tube Neoplasms,Melanoma,Testicular Neoplasms,Bile Duct Neoplasms,Lung Neoplasms,Colonic Neoplasms,Adrenocortical Carcinoma,Carcinoma, Renal Cell,Colonic Polyps,Adenomatous Polyposis Coli,Lymphoma, Large B-Cell, Diffuse,Pheochromocytoma,Paraganglioma,Leiomyoma,Hemangioblastoma,Hyperparathyroidism,Pancreatic Neoplasms,Vulvar Neoplasms,Brain Neoplasms,Liver Neoplasms,Kidney Neoplasms,Prostatic Neoplasms,Glioblastoma,Oncocytoma, renal https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000942 Despite the potential of whole-genome sequencing (WGS) to improve patient diagnosis and care, the empirical value of WGS in the cancer genetics clinic is unknown. We performed WGS on members of two cohorts of cancer genetics patients: those with BRCA1/2 mutations (n = 176) and those without (n = 82). Initial analysis of potentially pathogenic variants (PPVs, defined as nonsynonymous variants with allele frequency 1% in ESP6500) in 163 clinically-relevant genes suggested that WGS will provide useful clinical results. This is despite the fact that a majority of PPVs were novel missense variants likely to be classified as variants of unknown significance (VUS). Furthermore, previously reported pathogenic missense variants did not always associate with their predicted diseases in our patients. This suggests that the clinical use of WGS will require large-scale efforts to consolidate WGS and patient data to improve accuracy of interpretation of rare variants. While loss-of-function (LoF) variants represented only a small fraction of PPVs, WGS identified additional cancer risk LoF PPVs in patients with known BRCA1/2 mutations and led to cancer risk diagnoses in 21% of non-BRCA cancer genetics patients after expanding our analysis to 3209 ClinVar genes. These data illustrate how WGS can be used to improve our ability to discover patients' cancer genetic risks. "Reprinted from doi:10.1016/j.ebiom.2014.12.003, with permission from EBioMedicine."

Link

dbGaP study id = phs000942

Keywords

  1. 11/27/24 11/27/24 - Dr. Christian Niklas
Copyright Holder

Theodora S. Ross, MD, PhD, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA, and Department of Cancer Genetics, UT Southwestern Medical Center, Dallas, TX, USA

Uploaded on

November 27, 2024

DOI

To request one please log in.

License

Creative Commons BY 4.0

Model comments :

You can comment on the data model here. Via the speech bubbles at the itemgroups and items you can add comments to those specificially.

Itemgroup comments for :

Item comments for :


No comments

In order to download data models you must be logged in. Please log in or register for free.

dbGaP phs000942 Use of WGS for Diagnosis and Discovery in the Cancer Genetics Clinic

Subject ID, gender, year of birth, life status, race, medical history of participant with cancer #1, #2, #3, #4, medical history of other diagnosis, onset of cancer #1, #2, #3, #4, age at other diagnosis, and current age of participant with or without different types of cancer and involved in the "Use of Whole Genome Sequencing for Diagnosis and Discovery in the Cancer Genetics Clinic" project.

pht004836
Description

pht004836

Subject ID
Description

SUBJECT_ID

Data type

text

Alias
UMLS CUI [1,1]
C2348585
Gender of participant
Description

Gender

Data type

text

Alias
UMLS CUI [1,1]
C0079399
Year of birth of participant
Description

Year_birth

Data type

text

Measurement units
  • Year
Alias
UMLS CUI [1,1]
C2826771
Year
Life status of participant
Description

Life_Status

Data type

text

Alias
UMLS CUI [1,1]
C1148433
Race of participant [African American, American Indian, Asian, Caucasian, Hispanic, Multiracial]
Description

Race

Data type

text

Alias
UMLS CUI [1,1]
C0034510
History of cancer 1 [Adrenocortical, Bladder, Brain, Breast, Clear cell renal cell carcinoma, Colon, Diffuse large B-cell lymphoma, Glioblastoma, Hemangioblastoma, Leiomyoma, Melanoma, Ovarian, Papillary multifocal renal cell carcinoma, Papillary renal cell carcinoma, Pheochromocytoma, Renal, Skin, Testicular, Testis, Thyroid, Unaffected, Vulvar]
Description

Hx_cancer1

Data type

string

Alias
UMLS CUI [1,1]
C0455471
UMLS CUI [1,2]
C0206686
UMLS CUI [1,3]
C0699885
UMLS CUI [1,4]
C0006118
UMLS CUI [1,5]
C0678222
UMLS CUI [1,6]
C0699790
UMLS CUI [1,7]
C0279702
UMLS CUI [1,8]
C0079744
UMLS CUI [1,9]
C0017636
UMLS CUI [1,10]
C0206734
UMLS CUI [1,11]
C0042133
UMLS CUI [1,12]
C0025202
UMLS CUI [1,13]
C0029925
UMLS CUI [1,14]
C1306837
UMLS CUI [1,15]
C0031511
UMLS CUI [1,16]
C0007134
UMLS CUI [1,17]
C0699893
UMLS CUI [1,18]
C0855197
UMLS CUI [1,19]
C0549473
UMLS CUI [1,20]
C0042993
History of cancer 2 [Ampulla of vater, Breast, Colon, Endometrium, Esophageal, Fallopian tube, Hemangioblastoma, Liver, Lung, Medullary thyroid, Ovarian, Paraganglioma, Peritoneum, Prostate, Renal oncocytoma, Skin, Thyroid]
Description

Hx_cancer2

Data type

text

Alias
UMLS CUI [1,1]
C0455471
UMLS CUI [1,2]
C0042425
UMLS CUI [1,3]
C0678222
UMLS CUI [1,4]
C0699790
UMLS CUI [1,5]
C0238122
UMLS CUI [1,6]
C0014859
UMLS CUI [1,7]
C0238462
UMLS CUI [1,8]
C0029925
UMLS CUI [1,9]
C1514428
UMLS CUI [1,10]
C0007112
UMLS CUI [1,11]
C2239176
UMLS CUI [1,12]
C0684249
UMLS CUI [1,13]
C0549473
UMLS CUI [1,14]
C0030421
UMLS CUI [1,15]
C0007134
UMLS CUI [1,16]
C0699893
UMLS CUI [1,17]
C0206734
History of cancer 3 [Breast, Ovarian, Pancreatic, Peritoneum, Skin]
Description

Hx_cancer3

Data type

string

Alias
UMLS CUI [1,1]
C0455471
UMLS CUI [1,2]
C0678222
UMLS CUI [1,3]
C0029925
UMLS CUI [1,4]
C0235974
UMLS CUI [1,5]
C0031153
UMLS CUI [1,6]
C0699893
History of cancer 4 [Breast, Skin]
Description

Hx_cancer4

Data type

string

Alias
UMLS CUI [1,1]
C0455471
UMLS CUI [1,2]
C0678222
UMLS CUI [1,3]
C0699893
Other diagnosis [Colon polyposis, Hyperparathyroidism]
Description

Other_dx

Data type

string

Alias
UMLS CUI [1,1]
C0205394
UMLS CUI [1,2]
C0011900
UMLS CUI [1,3]
C0020502
UMLS CUI [1,4]
C2865400
Disease onset cancer 1
Description

Age_onset_cancer1

Data type

text

Measurement units
  • Years
Alias
UMLS CUI [1,1]
C0574845
UMLS CUI [1,2]
C0006826
Years
Disease onset cancer 2
Description

Age_onset_cancer2

Data type

text

Measurement units
  • Years
Alias
UMLS CUI [1,1]
C0574845
UMLS CUI [1,2]
C0006826
Years
Disease onset cancer 3
Description

Age_onset_cancer3

Data type

text

Measurement units
  • Years
Alias
UMLS CUI [1,1]
C0574845
UMLS CUI [1,2]
C0006826
Years
Disease onset cancer 4
Description

Age_onset_cancer4

Data type

text

Measurement units
  • Years
Alias
UMLS CUI [1,1]
C0574845
UMLS CUI [1,2]
C0006826
Years
Age other diagnosis
Description

Age_other_dx

Data type

text

Measurement units
  • Years
Alias
UMLS CUI [1,1]
C0001779
UMLS CUI [1,2]
C0205394
UMLS CUI [1,3]
C0011900
Years
Current age of participant
Description

Age_current

Data type

text

Measurement units
  • Years
Alias
UMLS CUI [1,1]
C0001779
Years

Similar models

Subject ID, gender, year of birth, life status, race, medical history of participant with cancer #1, #2, #3, #4, medical history of other diagnosis, onset of cancer #1, #2, #3, #4, age at other diagnosis, and current age of participant with or without different types of cancer and involved in the "Use of Whole Genome Sequencing for Diagnosis and Discovery in the Cancer Genetics Clinic" project.

Name
Type
Description | Question | Decode (Coded Value)
Data type
Alias
Item Group
pht004836
SUBJECT_ID
Item
Subject ID
text
C2348585 (UMLS CUI [1,1])
Item
Gender of participant
text
C0079399 (UMLS CUI [1,1])
Code List
Gender of participant
CL Item
Female (F)
C0086287 (UMLS CUI [1,1])
CL Item
Male (M)
C0086582 (UMLS CUI [1,1])
Year_birth
Item
Year of birth of participant
text
C2826771 (UMLS CUI [1,1])
Item
Life status of participant
text
C1148433 (UMLS CUI [1,1])
Code List
Life status of participant
CL Item
Living (1)
C2584946 (UMLS CUI [1,1])
CL Item
Deceased (2)
C1306577 (UMLS CUI [1,1])
Item
Race of participant [African American, American Indian, Asian, Caucasian, Hispanic, Multiracial]
text
C0034510 (UMLS CUI [1,1])
Code List
Race of participant [African American, American Indian, Asian, Caucasian, Hispanic, Multiracial]
CL Item
No data (ND)
C1546437 (UMLS CUI [1,1])
Hx_cancer1
Item
History of cancer 1 [Adrenocortical, Bladder, Brain, Breast, Clear cell renal cell carcinoma, Colon, Diffuse large B-cell lymphoma, Glioblastoma, Hemangioblastoma, Leiomyoma, Melanoma, Ovarian, Papillary multifocal renal cell carcinoma, Papillary renal cell carcinoma, Pheochromocytoma, Renal, Skin, Testicular, Testis, Thyroid, Unaffected, Vulvar]
string
C0455471 (UMLS CUI [1,1])
C0206686 (UMLS CUI [1,2])
C0699885 (UMLS CUI [1,3])
C0006118 (UMLS CUI [1,4])
C0678222 (UMLS CUI [1,5])
C0699790 (UMLS CUI [1,6])
C0279702 (UMLS CUI [1,7])
C0079744 (UMLS CUI [1,8])
C0017636 (UMLS CUI [1,9])
C0206734 (UMLS CUI [1,10])
C0042133 (UMLS CUI [1,11])
C0025202 (UMLS CUI [1,12])
C0029925 (UMLS CUI [1,13])
C1306837 (UMLS CUI [1,14])
C0031511 (UMLS CUI [1,15])
C0007134 (UMLS CUI [1,16])
C0699893 (UMLS CUI [1,17])
C0855197 (UMLS CUI [1,18])
C0549473 (UMLS CUI [1,19])
C0042993 (UMLS CUI [1,20])
Hx_cancer2
Item
History of cancer 2 [Ampulla of vater, Breast, Colon, Endometrium, Esophageal, Fallopian tube, Hemangioblastoma, Liver, Lung, Medullary thyroid, Ovarian, Paraganglioma, Peritoneum, Prostate, Renal oncocytoma, Skin, Thyroid]
text
C0455471 (UMLS CUI [1,1])
C0042425 (UMLS CUI [1,2])
C0678222 (UMLS CUI [1,3])
C0699790 (UMLS CUI [1,4])
C0238122 (UMLS CUI [1,5])
C0014859 (UMLS CUI [1,6])
C0238462 (UMLS CUI [1,7])
C0029925 (UMLS CUI [1,8])
C1514428 (UMLS CUI [1,9])
C0007112 (UMLS CUI [1,10])
C2239176 (UMLS CUI [1,11])
C0684249 (UMLS CUI [1,12])
C0549473 (UMLS CUI [1,13])
C0030421 (UMLS CUI [1,14])
C0007134 (UMLS CUI [1,15])
C0699893 (UMLS CUI [1,16])
C0206734 (UMLS CUI [1,17])
Hx_cancer3
Item
History of cancer 3 [Breast, Ovarian, Pancreatic, Peritoneum, Skin]
string
C0455471 (UMLS CUI [1,1])
C0678222 (UMLS CUI [1,2])
C0029925 (UMLS CUI [1,3])
C0235974 (UMLS CUI [1,4])
C0031153 (UMLS CUI [1,5])
C0699893 (UMLS CUI [1,6])
Hx_cancer4
Item
History of cancer 4 [Breast, Skin]
string
C0455471 (UMLS CUI [1,1])
C0678222 (UMLS CUI [1,2])
C0699893 (UMLS CUI [1,3])
Other_dx
Item
Other diagnosis [Colon polyposis, Hyperparathyroidism]
string
C0205394 (UMLS CUI [1,1])
C0011900 (UMLS CUI [1,2])
C0020502 (UMLS CUI [1,3])
C2865400 (UMLS CUI [1,4])
Age_onset_cancer1
Item
Disease onset cancer 1
text
C0574845 (UMLS CUI [1,1])
C0006826 (UMLS CUI [1,2])
Age_onset_cancer2
Item
Disease onset cancer 2
text
C0574845 (UMLS CUI [1,1])
C0006826 (UMLS CUI [1,2])
Age_onset_cancer3
Item
Disease onset cancer 3
text
C0574845 (UMLS CUI [1,1])
C0006826 (UMLS CUI [1,2])
Age_onset_cancer4
Item
Disease onset cancer 4
text
C0574845 (UMLS CUI [1,1])
C0006826 (UMLS CUI [1,2])
Age_other_dx
Item
Age other diagnosis
text
C0001779 (UMLS CUI [1,1])
C0205394 (UMLS CUI [1,2])
C0011900 (UMLS CUI [1,3])
Age_current
Item
Current age of participant
text
C0001779 (UMLS CUI [1,1])

Do you need help on how to use the search function? Please watch the corresponding tutorial video for more details and learn how to use the search function most efficiently.

Watch Tutorial