ID

46094

Descrizione

SHIP Study https://doi.org/10.1093/ije/dyac034

collegamento

https://doi.org/10.1093/ije/dyac034

Keywords

  1. 26/10/24 26/10/24 - Martin Dugas
Titolare del copyright

University Medicine Greifswald

Caricato su

26 ottobre 2024

DOI

Per favore, per richiedere un accesso.

Licenza

Creative Commons BY 4.0

Commenti del modello :

Puoi commentare il modello dati qui. Tramite i fumetti nei gruppi di articoli e articoli è possibile aggiungere commenti a quelli in modo specifico.

Commenti del gruppo di articoli per :

Commenti dell'articolo per :

Per scaricare i modelli di dati devi essere registrato. Per favore accesso o registrati GRATIS.

Study_SHIP-TREND_TRV

t1.trv_meta_frm

Item Group t1.trv_meta_frm
Descrizione

Item Group t1.trv_meta_frm

Metabolic syndrome
Descrizione

metsyn_t1

Tipo di dati

integer

Alias
VAR_NAMES
metsyn_t1
LABEL
Metabolic syndrome
DATA_TYPE
integer
VALUE_LABELS
0=No|1=Yes
MISSING_LIST_TABLE
missing_table_2127
STUDY_SEGMENT
t1.trv_meta_frm
VARIABLE_ORDER
300.0
LABEL_DE
Metabolisches Syndrom
VALUE_LABELS_DE
0=Nein|1=Ja
TABLE_NAME
T_TRV
UNIQUE_NAME
t1.metsyn_t1
SOURCE
TREND
DCE
SHIPTrend-1
HIERARCHY
TREND|TREND1|TRV|TRV_META|TRV_META_FRM
time fasting [h]
Descrizione

fasting_t1

Tipo di dati

float

Alias
VAR_NAMES
fasting_t1
LABEL
time fasting [h]
DATA_TYPE
float
MISSING_LIST_TABLE
missing_table_2127
STUDY_SEGMENT
t1.trv_meta_frm
VARIABLE_ORDER
310.0
LABEL_DE
Nüchternzeit
TABLE_NAME
T_TRV
UNIQUE_NAME
t1.fasting_t1
SOURCE
TREND
DCE
SHIPTrend-1
HIERARCHY
TREND|TREND1|TRV|TRV_META|TRV_META_FRM
Diabetes (known and diagnosed based on SHIP data)
Descrizione

diabetes_t1

Tipo di dati

integer

Alias
VAR_NAMES
diabetes_t1
LABEL
Diabetes (known and diagnosed based on SHIP data)
DATA_TYPE
integer
VALUE_LABELS
0=No|1=Yes
MISSING_LIST_TABLE
missing_table_2127
STUDY_SEGMENT
t1.trv_meta_frm
VARIABLE_ORDER
320.0
LABEL_DE
Diabetes (bekannter und anhand von SHIP-Daten diagnostizierter)
VALUE_LABELS_DE
0=Nein|1=Ja
TABLE_NAME
T_TRV
UNIQUE_NAME
t1.diabetes_t1
SOURCE
TREND
DCE
SHIPTrend-1
HIERARCHY
TREND|TREND1|TRV|TRV_META|TRV_META_FRM
Diabetes type 2 (known and diagnosed based on SHIP data)
Descrizione

diabetes_typ2_t1

Tipo di dati

integer

Alias
VAR_NAMES
diabetes_typ2_t1
LABEL
Diabetes type 2 (known and diagnosed based on SHIP data)
DATA_TYPE
integer
VALUE_LABELS
0=No|1=Yes
MISSING_LIST_TABLE
missing_table_2127
STUDY_SEGMENT
t1.trv_meta_frm
VARIABLE_ORDER
330.0
LABEL_DE
Typ-2 Diabetes (bekannter und anhand von SHIP-Daten diagnostizierter)
VALUE_LABELS_DE
0=Nein|1=Ja
TABLE_NAME
T_TRV
UNIQUE_NAME
t1.diabetes_typ2_t1
SOURCE
TREND
DCE
SHIPTrend-1
HIERARCHY
TREND|TREND1|TRV|TRV_META|TRV_META_FRM
Known diabetes (all types)
Descrizione

diab_known_t1

Tipo di dati

integer

Alias
VAR_NAMES
diab_known_t1
LABEL
Known diabetes (all types)
DATA_TYPE
integer
VALUE_LABELS
0=No|1=Yes
MISSING_LIST_TABLE
missing_table_2127
STUDY_SEGMENT
t1.trv_meta_frm
VARIABLE_ORDER
340.0
LABEL_DE
Bekannter Diabetes (alle Typen)
VALUE_LABELS_DE
0=Nein|1=Ja
TABLE_NAME
T_TRV
UNIQUE_NAME
t1.diab_known_t1
SOURCE
TREND
DCE
SHIPTrend-1
HIERARCHY
TREND|TREND1|TRV|TRV_META|TRV_META_FRM

Similar models

t1.trv_meta_frm

Name
genere
Description | Question | Decode (Coded Value)
Tipo di dati
Alias
Item Group
Item Group t1.trv_meta_frm
Item
Metabolic syndrome
integer
metsyn_t1 (VAR_NAMES)
Metabolic syndrome (LABEL)
integer (DATA_TYPE)
0=No|1=Yes (VALUE_LABELS)
missing_table_2127 (MISSING_LIST_TABLE)
t1.trv_meta_frm (STUDY_SEGMENT)
300.0 (VARIABLE_ORDER)
Metabolisches Syndrom (LABEL_DE)
0=Nein|1=Ja (VALUE_LABELS_DE)
T_TRV (TABLE_NAME)
t1.metsyn_t1 (UNIQUE_NAME)
TREND (SOURCE)
SHIPTrend-1 (DCE)
TREND|TREND1|TRV|TRV_META|TRV_META_FRM (HIERARCHY)
Code List
Metabolic syndrome
CL Item
Yes (1)
CL Item
No (0)
fasting_t1
Item
time fasting [h]
float
fasting_t1 (VAR_NAMES)
time fasting [h] (LABEL)
float (DATA_TYPE)
missing_table_2127 (MISSING_LIST_TABLE)
t1.trv_meta_frm (STUDY_SEGMENT)
310.0 (VARIABLE_ORDER)
Nüchternzeit (LABEL_DE)
T_TRV (TABLE_NAME)
t1.fasting_t1 (UNIQUE_NAME)
TREND (SOURCE)
SHIPTrend-1 (DCE)
TREND|TREND1|TRV|TRV_META|TRV_META_FRM (HIERARCHY)
Item
Diabetes (known and diagnosed based on SHIP data)
integer
diabetes_t1 (VAR_NAMES)
Diabetes (known and diagnosed based on SHIP data) (LABEL)
integer (DATA_TYPE)
0=No|1=Yes (VALUE_LABELS)
missing_table_2127 (MISSING_LIST_TABLE)
t1.trv_meta_frm (STUDY_SEGMENT)
320.0 (VARIABLE_ORDER)
Diabetes (bekannter und anhand von SHIP-Daten diagnostizierter) (LABEL_DE)
0=Nein|1=Ja (VALUE_LABELS_DE)
T_TRV (TABLE_NAME)
t1.diabetes_t1 (UNIQUE_NAME)
TREND (SOURCE)
SHIPTrend-1 (DCE)
TREND|TREND1|TRV|TRV_META|TRV_META_FRM (HIERARCHY)
Code List
Diabetes (known and diagnosed based on SHIP data)
CL Item
Yes (1)
CL Item
No (0)
Item
Diabetes type 2 (known and diagnosed based on SHIP data)
integer
diabetes_typ2_t1 (VAR_NAMES)
Diabetes type 2 (known and diagnosed based on SHIP data) (LABEL)
integer (DATA_TYPE)
0=No|1=Yes (VALUE_LABELS)
missing_table_2127 (MISSING_LIST_TABLE)
t1.trv_meta_frm (STUDY_SEGMENT)
330.0 (VARIABLE_ORDER)
Typ-2 Diabetes (bekannter und anhand von SHIP-Daten diagnostizierter) (LABEL_DE)
0=Nein|1=Ja (VALUE_LABELS_DE)
T_TRV (TABLE_NAME)
t1.diabetes_typ2_t1 (UNIQUE_NAME)
TREND (SOURCE)
SHIPTrend-1 (DCE)
TREND|TREND1|TRV|TRV_META|TRV_META_FRM (HIERARCHY)
Code List
Diabetes type 2 (known and diagnosed based on SHIP data)
CL Item
Yes (1)
CL Item
No (0)
Item
Known diabetes (all types)
integer
diab_known_t1 (VAR_NAMES)
Known diabetes (all types) (LABEL)
integer (DATA_TYPE)
0=No|1=Yes (VALUE_LABELS)
missing_table_2127 (MISSING_LIST_TABLE)
t1.trv_meta_frm (STUDY_SEGMENT)
340.0 (VARIABLE_ORDER)
Bekannter Diabetes (alle Typen) (LABEL_DE)
0=Nein|1=Ja (VALUE_LABELS_DE)
T_TRV (TABLE_NAME)
t1.diab_known_t1 (UNIQUE_NAME)
TREND (SOURCE)
SHIPTrend-1 (DCE)
TREND|TREND1|TRV|TRV_META|TRV_META_FRM (HIERARCHY)
Code List
Known diabetes (all types)
CL Item
Yes (1)
CL Item
No (0)

Si prega di utilizzare questo modulo per feedback, domande e suggerimenti per miglioramenti.

I campi contrassegnati da * sono obbligatori.

Do you need help on how to use the search function? Please watch the corresponding tutorial video for more details and learn how to use the search function most efficiently.

Watch Tutorial