ID

46094

Description

SHIP Study https://doi.org/10.1093/ije/dyac034

Lien

https://doi.org/10.1093/ije/dyac034

Mots-clés

  1. 26/10/2024 26/10/2024 - Martin Dugas
Détendeur de droits

University Medicine Greifswald

Téléchargé le

26 octobre 2024

DOI

Pour une demande vous connecter.

Licence

Creative Commons BY 4.0

Modèle Commentaires :

Ici, vous pouvez faire des commentaires sur le modèle. À partir des bulles de texte, vous pouvez laisser des commentaires spécifiques sur les groupes Item et les Item.

Groupe Item commentaires pour :

Item commentaires pour :

Vous devez être connecté pour pouvoir télécharger des formulaires. Veuillez vous connecter ou s’inscrire gratuitement.

Study_SHIP-TREND_TRV

t1.trv_meta_frm

Item Group t1.trv_meta_frm
Description

Item Group t1.trv_meta_frm

Metabolic syndrome
Description

metsyn_t1

Type de données

integer

Alias
VAR_NAMES
metsyn_t1
LABEL
Metabolic syndrome
DATA_TYPE
integer
VALUE_LABELS
0=No|1=Yes
MISSING_LIST_TABLE
missing_table_2127
STUDY_SEGMENT
t1.trv_meta_frm
VARIABLE_ORDER
300.0
LABEL_DE
Metabolisches Syndrom
VALUE_LABELS_DE
0=Nein|1=Ja
TABLE_NAME
T_TRV
UNIQUE_NAME
t1.metsyn_t1
SOURCE
TREND
DCE
SHIPTrend-1
HIERARCHY
TREND|TREND1|TRV|TRV_META|TRV_META_FRM
time fasting [h]
Description

fasting_t1

Type de données

float

Alias
VAR_NAMES
fasting_t1
LABEL
time fasting [h]
DATA_TYPE
float
MISSING_LIST_TABLE
missing_table_2127
STUDY_SEGMENT
t1.trv_meta_frm
VARIABLE_ORDER
310.0
LABEL_DE
Nüchternzeit
TABLE_NAME
T_TRV
UNIQUE_NAME
t1.fasting_t1
SOURCE
TREND
DCE
SHIPTrend-1
HIERARCHY
TREND|TREND1|TRV|TRV_META|TRV_META_FRM
Diabetes (known and diagnosed based on SHIP data)
Description

diabetes_t1

Type de données

integer

Alias
VAR_NAMES
diabetes_t1
LABEL
Diabetes (known and diagnosed based on SHIP data)
DATA_TYPE
integer
VALUE_LABELS
0=No|1=Yes
MISSING_LIST_TABLE
missing_table_2127
STUDY_SEGMENT
t1.trv_meta_frm
VARIABLE_ORDER
320.0
LABEL_DE
Diabetes (bekannter und anhand von SHIP-Daten diagnostizierter)
VALUE_LABELS_DE
0=Nein|1=Ja
TABLE_NAME
T_TRV
UNIQUE_NAME
t1.diabetes_t1
SOURCE
TREND
DCE
SHIPTrend-1
HIERARCHY
TREND|TREND1|TRV|TRV_META|TRV_META_FRM
Diabetes type 2 (known and diagnosed based on SHIP data)
Description

diabetes_typ2_t1

Type de données

integer

Alias
VAR_NAMES
diabetes_typ2_t1
LABEL
Diabetes type 2 (known and diagnosed based on SHIP data)
DATA_TYPE
integer
VALUE_LABELS
0=No|1=Yes
MISSING_LIST_TABLE
missing_table_2127
STUDY_SEGMENT
t1.trv_meta_frm
VARIABLE_ORDER
330.0
LABEL_DE
Typ-2 Diabetes (bekannter und anhand von SHIP-Daten diagnostizierter)
VALUE_LABELS_DE
0=Nein|1=Ja
TABLE_NAME
T_TRV
UNIQUE_NAME
t1.diabetes_typ2_t1
SOURCE
TREND
DCE
SHIPTrend-1
HIERARCHY
TREND|TREND1|TRV|TRV_META|TRV_META_FRM
Known diabetes (all types)
Description

diab_known_t1

Type de données

integer

Alias
VAR_NAMES
diab_known_t1
LABEL
Known diabetes (all types)
DATA_TYPE
integer
VALUE_LABELS
0=No|1=Yes
MISSING_LIST_TABLE
missing_table_2127
STUDY_SEGMENT
t1.trv_meta_frm
VARIABLE_ORDER
340.0
LABEL_DE
Bekannter Diabetes (alle Typen)
VALUE_LABELS_DE
0=Nein|1=Ja
TABLE_NAME
T_TRV
UNIQUE_NAME
t1.diab_known_t1
SOURCE
TREND
DCE
SHIPTrend-1
HIERARCHY
TREND|TREND1|TRV|TRV_META|TRV_META_FRM

Similar models

t1.trv_meta_frm

Name
Type
Description | Question | Decode (Coded Value)
Type de données
Alias
Item Group
Item Group t1.trv_meta_frm
Item
Metabolic syndrome
integer
metsyn_t1 (VAR_NAMES)
Metabolic syndrome (LABEL)
integer (DATA_TYPE)
0=No|1=Yes (VALUE_LABELS)
missing_table_2127 (MISSING_LIST_TABLE)
t1.trv_meta_frm (STUDY_SEGMENT)
300.0 (VARIABLE_ORDER)
Metabolisches Syndrom (LABEL_DE)
0=Nein|1=Ja (VALUE_LABELS_DE)
T_TRV (TABLE_NAME)
t1.metsyn_t1 (UNIQUE_NAME)
TREND (SOURCE)
SHIPTrend-1 (DCE)
TREND|TREND1|TRV|TRV_META|TRV_META_FRM (HIERARCHY)
Code List
Metabolic syndrome
CL Item
Yes (1)
CL Item
No (0)
fasting_t1
Item
time fasting [h]
float
fasting_t1 (VAR_NAMES)
time fasting [h] (LABEL)
float (DATA_TYPE)
missing_table_2127 (MISSING_LIST_TABLE)
t1.trv_meta_frm (STUDY_SEGMENT)
310.0 (VARIABLE_ORDER)
Nüchternzeit (LABEL_DE)
T_TRV (TABLE_NAME)
t1.fasting_t1 (UNIQUE_NAME)
TREND (SOURCE)
SHIPTrend-1 (DCE)
TREND|TREND1|TRV|TRV_META|TRV_META_FRM (HIERARCHY)
Item
Diabetes (known and diagnosed based on SHIP data)
integer
diabetes_t1 (VAR_NAMES)
Diabetes (known and diagnosed based on SHIP data) (LABEL)
integer (DATA_TYPE)
0=No|1=Yes (VALUE_LABELS)
missing_table_2127 (MISSING_LIST_TABLE)
t1.trv_meta_frm (STUDY_SEGMENT)
320.0 (VARIABLE_ORDER)
Diabetes (bekannter und anhand von SHIP-Daten diagnostizierter) (LABEL_DE)
0=Nein|1=Ja (VALUE_LABELS_DE)
T_TRV (TABLE_NAME)
t1.diabetes_t1 (UNIQUE_NAME)
TREND (SOURCE)
SHIPTrend-1 (DCE)
TREND|TREND1|TRV|TRV_META|TRV_META_FRM (HIERARCHY)
Code List
Diabetes (known and diagnosed based on SHIP data)
CL Item
Yes (1)
CL Item
No (0)
Item
Diabetes type 2 (known and diagnosed based on SHIP data)
integer
diabetes_typ2_t1 (VAR_NAMES)
Diabetes type 2 (known and diagnosed based on SHIP data) (LABEL)
integer (DATA_TYPE)
0=No|1=Yes (VALUE_LABELS)
missing_table_2127 (MISSING_LIST_TABLE)
t1.trv_meta_frm (STUDY_SEGMENT)
330.0 (VARIABLE_ORDER)
Typ-2 Diabetes (bekannter und anhand von SHIP-Daten diagnostizierter) (LABEL_DE)
0=Nein|1=Ja (VALUE_LABELS_DE)
T_TRV (TABLE_NAME)
t1.diabetes_typ2_t1 (UNIQUE_NAME)
TREND (SOURCE)
SHIPTrend-1 (DCE)
TREND|TREND1|TRV|TRV_META|TRV_META_FRM (HIERARCHY)
Code List
Diabetes type 2 (known and diagnosed based on SHIP data)
CL Item
Yes (1)
CL Item
No (0)
Item
Known diabetes (all types)
integer
diab_known_t1 (VAR_NAMES)
Known diabetes (all types) (LABEL)
integer (DATA_TYPE)
0=No|1=Yes (VALUE_LABELS)
missing_table_2127 (MISSING_LIST_TABLE)
t1.trv_meta_frm (STUDY_SEGMENT)
340.0 (VARIABLE_ORDER)
Bekannter Diabetes (alle Typen) (LABEL_DE)
0=Nein|1=Ja (VALUE_LABELS_DE)
T_TRV (TABLE_NAME)
t1.diab_known_t1 (UNIQUE_NAME)
TREND (SOURCE)
SHIPTrend-1 (DCE)
TREND|TREND1|TRV|TRV_META|TRV_META_FRM (HIERARCHY)
Code List
Known diabetes (all types)
CL Item
Yes (1)
CL Item
No (0)

Utilisez ce formulaire pour les retours, les questions et les améliorations suggérées.

Les champs marqués d’un * sont obligatoires.

Do you need help on how to use the search function? Please watch the corresponding tutorial video for more details and learn how to use the search function most efficiently.

Watch Tutorial