0 Avaliações

ID

45907

Descrição

Principal Investigator: Mohammad Faghihi, MD, PhD, University of Miami, Miami, FL, USA MeSH: Parkinson Disease https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000901 There is a clear need to develop biomarkers for Parkinson disease (PD) diagnosis and monitoring disease progression. In this study we evaluated cerebrospinal fluid (CSF) proteins, which are known to be critically involved in PD or identified in our preliminary profiling studies, aptamers, and RNAs as potential PD biomarkers. Access to subjects for this study was via the Pacific Northwest Udall Center (PANUC) and the Alzheimer's Disease Research Center (ADRC) at the University of Washington and Oregon Health and Sciences University (OHSU). Using CSF samples from 30 well-characterized patients with PD and 30 age-, sex-matched healthy controls, we prepared RNA seq libraries and performed deep sequencing of all RNA species, including small and long RNA, mRNAs, noncoding RNAs and differentially spliced transcripts. We then tried several methods for RNAseq data analysis to optimize our analysis pipeline. We identified a total of 3381 transcripts corresponding to 182 long intergenic RNAs (LincRNAs), 11 microRNAs (miRNAs), 2861 protein-coding transcripts, 200 pseudogenes and 127 antisense RNAs; some of them were differentially expressed between PD and control groups. Selected differentially expressed RNAs have been validated in the same set of CSF samples using real-time PCR (RT-PCR). Further validations in independent, larger cohorts of samples are still ongoing. Our results obtained so far suggested that CSF proteins and RNAs could be used as good indexes for PD diagnosis and disease severity/progression. This study is a part of the NIDDS-funded Parkinson's Disease Biomarkers Program (PDBP).

Link

dbGaP study = phs000901

Palavras-chave

  1. 17/01/2024 17/01/2024 - Simon Heim
Titular dos direitos

Mohammad Faghihi, MD, PhD, University of Miami, Miami, FL, USA

Transferido a

17 de janeiro de 2024

DOI

Para um pedido faça login.

Licença

Creative Commons BY 4.0

Comentários do modelo :

Aqui pode comentar o modelo. Pode comentá-lo especificamente através dos balões de texto nos grupos de itens e itens.

Comentários do grupo de itens para :

Comentários do item para :


    Sem comentários

    Para descarregar formulários, precisa de ter uma sessão iniciada. Por favor faça login ou registe-se gratuitamente.

    dbGaP phs000901 University of Washington CSF biomarker study for Parkinson disease

    Sample - Attribute Information

    pht004675
    Descrição

    pht004675

    Alias
    UMLS CUI [1,1]
    C3846158 (Other Coding)
    LOINC
    LA4728-7
    De-identified Sample ID
    Descrição

    SAMPLE_ID

    Tipo de dados

    string

    Alias
    UMLS CUI [1,1]
    C4684638 (De-identified Information)
    UMLS CUI [1,2]
    C1299222 (Sample identification number)
    SNOMED
    372274003
    Body site where sample was collected
    Descrição

    BODY_SITE

    Tipo de dados

    string

    Alias
    UMLS CUI [1,1]
    C0449705 (Site of sampling)
    SNOMED
    246317007
    LOINC
    MTHU008875
    Analyte Type
    Descrição

    ANALYTE_TYPE

    Tipo de dados

    string

    Alias
    UMLS CUI [1,1]
    C4744818 (Analyte Type)
    Tumor status
    Descrição

    IS_TUMOR

    Tipo de dados

    text

    Alias
    UMLS CUI [1,1]
    C0475752 (Tumor status)
    SNOMED
    277058005
    Cell or tissue type or subtype of sample
    Descrição

    HISTOLOGICAL_TYPE

    Tipo de dados

    string

    Alias
    UMLS CUI [1,1]
    C2347026 (Biospecimen)
    UMLS CUI [1,2]
    C0007634 (Cells)
    SNOMED
    4421005
    LOINC
    LP14738-6
    UMLS CUI [1,3]
    C0332307 (Type - attribute)
    SNOMED
    261664005
    UMLS CUI [2,1]
    C2347026 (Biospecimen)
    UMLS CUI [2,2]
    C0007634 (Cells)
    SNOMED
    4421005
    LOINC
    LP14738-6
    UMLS CUI [2,3]
    C0449560 (Subtype (attribute))
    SNOMED
    260837004
    UMLS CUI [3,1]
    C1292533 (Tissue specimen)
    SNOMED
    119376003
    UMLS CUI [3,2]
    C0332307 (Type - attribute)
    SNOMED
    261664005
    UMLS CUI [4,1]
    C1292533 (Tissue specimen)
    SNOMED
    119376003
    UMLS CUI [4,2]
    C0449560 (Subtype (attribute))
    SNOMED
    260837004
    Name of the center which conducted sequencing
    Descrição

    SEQUENCING_CENTER

    Tipo de dados

    string

    Alias
    UMLS CUI [1,1]
    C1301943 (Institution name)
    SNOMED
    398321007
    UMLS CUI [1,2]
    C5575037 (undefined)
    UMLS CUI [1,3]
    C1294197 (Nucleic acid sequencing)
    SNOMED
    117040002
    LOINC
    LP150045-5

    Similar models

    Sample - Attribute Information

    Name
    Tipo
    Description | Question | Decode (Coded Value)
    Tipo de dados
    Alias
    Item Group
    pht004675
    C3846158 (UMLS CUI [1,1])
    SAMPLE_ID
    Item
    De-identified Sample ID
    string
    C4684638 (UMLS CUI [1,1])
    C1299222 (UMLS CUI [1,2])
    BODY_SITE
    Item
    Body site where sample was collected
    string
    C0449705 (UMLS CUI [1,1])
    ANALYTE_TYPE
    Item
    Analyte Type
    string
    C4744818 (UMLS CUI [1,1])
    Item
    Tumor status
    text
    C0475752 (UMLS CUI [1,1])
    Code List
    Tumor status
    CL Item
    Is not a tumor (N)
    C0027651 (UMLS CUI [1,1])
    C1518422 (UMLS CUI [1,2])
    CL Item
    Unknown (U)
    C0439673 (UMLS CUI [1,1])
    CL Item
    Is Tumor (Y)
    C0027651 (UMLS CUI [1,1])
    HISTOLOGICAL_TYPE
    Item
    Cell or tissue type or subtype of sample
    string
    C2347026 (UMLS CUI [1,1])
    C0007634 (UMLS CUI [1,2])
    C0332307 (UMLS CUI [1,3])
    C2347026 (UMLS CUI [2,1])
    C0007634 (UMLS CUI [2,2])
    C0449560 (UMLS CUI [2,3])
    C1292533 (UMLS CUI [3,1])
    C0332307 (UMLS CUI [3,2])
    C1292533 (UMLS CUI [4,1])
    C0449560 (UMLS CUI [4,2])
    SEQUENCING_CENTER
    Item
    Name of the center which conducted sequencing
    string
    C1301943 (UMLS CUI [1,1])
    C5575037 (UMLS CUI [1,2])
    C1294197 (UMLS CUI [1,3])

    Do you need help on how to use the search function? Please watch the corresponding tutorial video for more details and learn how to use the search function most efficiently.

    Watch Tutorial