ID

45907

Descrizione

Principal Investigator: Mohammad Faghihi, MD, PhD, University of Miami, Miami, FL, USA MeSH: Parkinson Disease https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000901 There is a clear need to develop biomarkers for Parkinson disease (PD) diagnosis and monitoring disease progression. In this study we evaluated cerebrospinal fluid (CSF) proteins, which are known to be critically involved in PD or identified in our preliminary profiling studies, aptamers, and RNAs as potential PD biomarkers. Access to subjects for this study was via the Pacific Northwest Udall Center (PANUC) and the Alzheimer's Disease Research Center (ADRC) at the University of Washington and Oregon Health and Sciences University (OHSU). Using CSF samples from 30 well-characterized patients with PD and 30 age-, sex-matched healthy controls, we prepared RNA seq libraries and performed deep sequencing of all RNA species, including small and long RNA, mRNAs, noncoding RNAs and differentially spliced transcripts. We then tried several methods for RNAseq data analysis to optimize our analysis pipeline. We identified a total of 3381 transcripts corresponding to 182 long intergenic RNAs (LincRNAs), 11 microRNAs (miRNAs), 2861 protein-coding transcripts, 200 pseudogenes and 127 antisense RNAs; some of them were differentially expressed between PD and control groups. Selected differentially expressed RNAs have been validated in the same set of CSF samples using real-time PCR (RT-PCR). Further validations in independent, larger cohorts of samples are still ongoing. Our results obtained so far suggested that CSF proteins and RNAs could be used as good indexes for PD diagnosis and disease severity/progression. This study is a part of the NIDDS-funded Parkinson's Disease Biomarkers Program (PDBP).

collegamento

dbGaP study = phs000901

Keywords

  1. 17/01/24 17/01/24 - Simon Heim
Titolare del copyright

Mohammad Faghihi, MD, PhD, University of Miami, Miami, FL, USA

Caricato su

17 gennaio 2024

DOI

Per favore, per richiedere un accesso.

Licenza

Creative Commons BY 4.0

Commenti del modello :

Puoi commentare il modello dati qui. Tramite i fumetti nei gruppi di articoli e articoli è possibile aggiungere commenti a quelli in modo specifico.

Commenti del gruppo di articoli per :

Commenti dell'articolo per :

Per scaricare i modelli di dati devi essere registrato. Per favore accesso o registrati GRATIS.

dbGaP phs000901 University of Washington CSF biomarker study for Parkinson disease

The dataset includes sociodemographic (i.e. age/sex) data.

pht004674
Descrizione

pht004674

Alias
UMLS CUI [1,1]
C3846158
De-identified Subject ID
Descrizione

SUBJECT_ID

Tipo di dati

string

Alias
UMLS CUI [1,1]
C4684638
UMLS CUI [1,2]
C2348585
Gender of participant
Descrizione

sex

Tipo di dati

text

Alias
UMLS CUI [1,1]
C0079399
Subject's age at CSF collection
Descrizione

age

Tipo di dati

text

Unità di misura
  • Years
Alias
UMLS CUI [1,1]
C0001779
UMLS CUI [1,2]
C0011008
UMLS CUI [1,3]
C0007806
UMLS CUI [1,4]
C0200345
Years

Similar models

The dataset includes sociodemographic (i.e. age/sex) data.

Name
genere
Description | Question | Decode (Coded Value)
Tipo di dati
Alias
Item Group
pht004674
C3846158 (UMLS CUI [1,1])
SUBJECT_ID
Item
De-identified Subject ID
string
C4684638 (UMLS CUI [1,1])
C2348585 (UMLS CUI [1,2])
Item
Gender of participant
text
C0079399 (UMLS CUI [1,1])
Code List
Gender of participant
CL Item
Female (F)
C0086287 (UMLS CUI [1,1])
CL Item
Male (M)
C0086582 (UMLS CUI [1,1])
CL Item
Unknown (UNK)
CL Item
Other (Oth)
CL Item
Not applicable (NA)
C1272460 (UMLS CUI [1,1])
age
Item
Subject's age at CSF collection
text
C0001779 (UMLS CUI [1,1])
C0011008 (UMLS CUI [1,2])
C0007806 (UMLS CUI [1,3])
C0200345 (UMLS CUI [1,4])

Si prega di utilizzare questo modulo per feedback, domande e suggerimenti per miglioramenti.

I campi contrassegnati da * sono obbligatori.

Do you need help on how to use the search function? Please watch the corresponding tutorial video for more details and learn how to use the search function most efficiently.

Watch Tutorial