ID

45907

Descripción

Principal Investigator: Mohammad Faghihi, MD, PhD, University of Miami, Miami, FL, USA MeSH: Parkinson Disease https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000901 There is a clear need to develop biomarkers for Parkinson disease (PD) diagnosis and monitoring disease progression. In this study we evaluated cerebrospinal fluid (CSF) proteins, which are known to be critically involved in PD or identified in our preliminary profiling studies, aptamers, and RNAs as potential PD biomarkers. Access to subjects for this study was via the Pacific Northwest Udall Center (PANUC) and the Alzheimer's Disease Research Center (ADRC) at the University of Washington and Oregon Health and Sciences University (OHSU). Using CSF samples from 30 well-characterized patients with PD and 30 age-, sex-matched healthy controls, we prepared RNA seq libraries and performed deep sequencing of all RNA species, including small and long RNA, mRNAs, noncoding RNAs and differentially spliced transcripts. We then tried several methods for RNAseq data analysis to optimize our analysis pipeline. We identified a total of 3381 transcripts corresponding to 182 long intergenic RNAs (LincRNAs), 11 microRNAs (miRNAs), 2861 protein-coding transcripts, 200 pseudogenes and 127 antisense RNAs; some of them were differentially expressed between PD and control groups. Selected differentially expressed RNAs have been validated in the same set of CSF samples using real-time PCR (RT-PCR). Further validations in independent, larger cohorts of samples are still ongoing. Our results obtained so far suggested that CSF proteins and RNAs could be used as good indexes for PD diagnosis and disease severity/progression. This study is a part of the NIDDS-funded Parkinson's Disease Biomarkers Program (PDBP).

Link

dbGaP study = phs000901

Palabras clave

  1. 17/1/24 17/1/24 - Simon Heim
Titular de derechos de autor

Mohammad Faghihi, MD, PhD, University of Miami, Miami, FL, USA

Subido en

17 de enero de 2024

DOI

Para solicitar uno, por favor iniciar sesión.

Licencia

Creative Commons BY 4.0

Comentarios del modelo :

Puede comentar sobre el modelo de datos aquí. A través de las burbujas de diálogo en los grupos de elementos y elementos, puede agregar comentarios específicos.

Comentarios de grupo de elementos para :

Comentarios del elemento para :

Para descargar modelos de datos, debe haber iniciado sesión. Por favor iniciar sesión o Registrate gratis.

dbGaP phs000901 University of Washington CSF biomarker study for Parkinson disease

The dataset includes sociodemographic (i.e. age/sex) data.

pht004674
Descripción

pht004674

Alias
UMLS CUI [1,1]
C3846158
De-identified Subject ID
Descripción

SUBJECT_ID

Tipo de datos

string

Alias
UMLS CUI [1,1]
C4684638
UMLS CUI [1,2]
C2348585
Gender of participant
Descripción

sex

Tipo de datos

text

Alias
UMLS CUI [1,1]
C0079399
Subject's age at CSF collection
Descripción

age

Tipo de datos

text

Unidades de medida
  • Years
Alias
UMLS CUI [1,1]
C0001779
UMLS CUI [1,2]
C0011008
UMLS CUI [1,3]
C0007806
UMLS CUI [1,4]
C0200345
Years

Similar models

The dataset includes sociodemographic (i.e. age/sex) data.

Name
Tipo
Description | Question | Decode (Coded Value)
Tipo de datos
Alias
Item Group
pht004674
C3846158 (UMLS CUI [1,1])
SUBJECT_ID
Item
De-identified Subject ID
string
C4684638 (UMLS CUI [1,1])
C2348585 (UMLS CUI [1,2])
Item
Gender of participant
text
C0079399 (UMLS CUI [1,1])
Code List
Gender of participant
CL Item
Female (F)
C0086287 (UMLS CUI [1,1])
CL Item
Male (M)
C0086582 (UMLS CUI [1,1])
CL Item
Unknown (UNK)
CL Item
Other (Oth)
CL Item
Not applicable (NA)
C1272460 (UMLS CUI [1,1])
age
Item
Subject's age at CSF collection
text
C0001779 (UMLS CUI [1,1])
C0011008 (UMLS CUI [1,2])
C0007806 (UMLS CUI [1,3])
C0200345 (UMLS CUI [1,4])

Utilice este formulario para comentarios, preguntas y sugerencias.

Los campos marcados con * son obligatorios.

Do you need help on how to use the search function? Please watch the corresponding tutorial video for more details and learn how to use the search function most efficiently.

Watch Tutorial