ID

45829

Beskrivning

Principal Investigator: Carlos Bustamante, PhD, Stanford University, Stanford, CA, USA MeSH: Population https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001033 Stanford contributed samples to the PAGE study that can act as a population reference dataset across the globe. Therefore this dataset includes reference individuals, without phenotypes, chosen to help infer ancestry that will help us understand the diverse samples available in PAGE. The complete dataset comprises individuals of European, African, Asian, Oceanian, and Native American descent, from a total of over 50 populations. A subset of these individuals from Puno, Peru and Easter Island (Rapa Nui), Chile, are included in the PAGE samples that were whole genome sequenced in 2015. Additional details are available in the Study Acknowledgments. The Global Reference Panel comprises 6 sample sets:- A population sample of Andean individuals primarily of Quechuan/Aymaran ancestry from Puno, Peru - A population sample of Easter Island (Rapa Nui), Chile - Individuals of indigenous origin from Oaxaca, Mexico - Individuals of indigenous origin from Honduras - Individuals of indigenous origin from Colombia - Individuals of indigenous origin from the Nama and Khomani KhoeSan populations of the Northern Cape, South Africa In addition, we genotyped publicly available samples that will be hosted on the Bustamante lab website (https://bustamantelab.stanford.edu/). These comprise large public datasets to provide an open reference dataset for the world: - The additional related individuals from the Americas in the Human Genome Diversity Panel (H952) plus all additional samples from the Americas - A subset of the unrelated individuals from the Maasai in Kinyawa, Kenya (MKK) dataset from the International Hapmap Project hosted at Coriell Additional samples will be available for restricted use with a data access agreement with the Bustamante Lab. This study is part of the Population Architecture using Genomics and Epidemiology (PAGE) study (phs000356).

Länk

dbGaP study = phs001033

Nyckelord

  1. 2023-07-31 2023-07-31 - Simon Heim
Rättsinnehavare

Carlos Bustamante, PhD, Stanford University, Stanford, CA, USA

Uppladdad den

31 juli 2023

DOI

För en begäran logga in.

Licens

Creative Commons BY 4.0

Modellkommentarer :

Här kan du kommentera modellen. Med hjälp av pratbubblor i Item-grupperna och Item kan du lägga in specifika kommentarer.

Itemgroup-kommentar för :

Item-kommentar för :

Du måste vara inloggad för att kunna ladda ner formulär. Var vänlig logga in eller registrera dig utan kostnad.

dbGaP phs001033 PAGE: Global Reference Panel

Eligibility Criteria

Inclusion and exclusion criteria
Beskrivning

Inclusion and exclusion criteria

Alias
UMLS CUI [1,1]
C1512693
UMLS CUI [1,2]
C0680251
Study participants were selected to reflect a family history of living in the region and indigenous ancestry.
Beskrivning

Study participants were selected to reflect a family history of living in the region and indigenous ancestry.

Datatyp

boolean

Alias
UMLS CUI [1,1]
C4554048
UMLS CUI [1,2]
C0242802
UMLS CUI [1,3]
C0241889
UMLS CUI [1,4]
C1512704
UMLS CUI [1,5]
C5447420
UMLS CUI [1,6]
C0035182

Similar models

Eligibility Criteria

Name
Typ
Description | Question | Decode (Coded Value)
Datatyp
Alias
Item Group
Inclusion and exclusion criteria
C1512693 (UMLS CUI [1,1])
C0680251 (UMLS CUI [1,2])
Study participants were selected to reflect a family history of living in the region and indigenous ancestry.
Item
Study participants were selected to reflect a family history of living in the region and indigenous ancestry.
boolean
C4554048 (UMLS CUI [1,1])
C0242802 (UMLS CUI [1,2])
C0241889 (UMLS CUI [1,3])
C1512704 (UMLS CUI [1,4])
C5447420 (UMLS CUI [1,5])
C0035182 (UMLS CUI [1,6])

Använd detta formulär för feedback, frågor och förslag på förbättringar.

Fält markerade med * är obligatoriska.

Do you need help on how to use the search function? Please watch the corresponding tutorial video for more details and learn how to use the search function most efficiently.

Watch Tutorial