ID

45804

Descrizione

Principal Investigator: Jean J. Zhao, PhD, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA MeSH: Breast Neoplasms,Neoplasm Metastasis,Brain Neoplasms,Neoplasm Transplantation,Molecular Targeted Therapy https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001063 We have developed orthotopic patient-derived xenograft models of HER2 positive breast cancer metastasized into the brain of patients to test novel therapeutic strategies. In this study, we identified a novel combinatorial therapeutic strategy that has resulted in a durable remission and markedly increased overall survival in majority of patient-derived xenograft (PDX) models tested. We performed whole exome sequencing analysis of these PDX tumors and their matched blood and patient samples to investigate drug sensitive and resistance mechanisms. Our sequencing data revealed an interesting association of genotyping and phenotyping with tumors responses to drug treatment.

collegamento

dbGaP-study=phs001063

Keywords

  1. 23-06-23 23-06-23 - Chiara Middel
Titolare del copyright

Jean J. Zhao, PhD, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA

Caricato su

23 juni 2023

DOI

Per favore, per richiedere un accesso.

Licenza

Creative Commons BY 4.0

Commenti del modello :

Puoi commentare il modello dati qui. Tramite i fumetti nei gruppi di articoli e articoli è possibile aggiungere commenti a quelli in modo specifico.

Commenti del gruppo di articoli per :

Commenti dell'articolo per :

Per scaricare i modelli di dati devi essere registrato. Per favore accesso o registrati GRATIS.

dbGaP phs001063 Genomic Characterization of PDX Models for Breast Cancer Brain Metastases

Similar models

Si prega di utilizzare questo modulo per feedback, domande e suggerimenti per miglioramenti.

I campi contrassegnati da * sono obbligatori.

Do you need help on how to use the search function? Please watch the corresponding tutorial video for more details and learn how to use the search function most efficiently.

Watch Tutorial