ID

45800

Descripción

Principal Investigator: Steven Finkbeiner, Gladstone Institutes, San Francesco, CA, USA MeSH: Huntington Disease,Degenerative Hereditary Diseases, Nervous System,Cell Death,Brain Diseases,Ataxia,Chorea,Cognition Disorders,Dyskinesias,Mental Disorders https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001071 The goal of our studies is to identify genetic modifiers of neurodegeneration in Huntington's disease (HD). HD is caused by expansion of CAG repeats in the huntingtin (Htt) gene, with longer stretches often leading to more rapid disease onset and progression. Yet, for a given number of repeats, the age of symptom onset can be variable, differing by up to decades. Thus, the age of onset of motor symptoms in HD is only partly explained by the length of the CAG expansion. Available evidence suggests that genetic modifiers contribute to the variation in HD onset. Identifying genetic modifiers is important because they may provide critical insights into HD pathogenesis and reveal key pathways that could be targeted by novel HD therapeutics. This is important since there are no disease-modifying therapies for HD, and mHtt is an unattractive small-molecule drug target. We recruited 21 HD families with varying characteristics of disease progression and age of onset and obtained medical histories, clinical records and DNA samples that were subjected to whole-genome sequencing (WGS). These WGS data describe families of 104 subjects, including HD patients and their unaffected family members. These individuals were selected based on individual clinical histories and family structures that best fit our criteria for expressing potential genetic modifiers. We are testing the hypothesis that novel, rare genetic variants contribute to HD and those genetic modifiers can be identified by WGS.

Link

dbGaP-study=phs001071

Palabras clave

  1. 23/6/23 23/6/23 - Chiara Middel
Titular de derechos de autor

Steven Finkbeiner, Gladstone Institutes, San Francesco, CA, USA

Subido en

23 de junio de 2023

DOI

Para solicitar uno, por favor iniciar sesión.

Licencia

Creative Commons BY 4.0

Comentarios del modelo :

Puede comentar sobre el modelo de datos aquí. A través de las burbujas de diálogo en los grupos de elementos y elementos, puede agregar comentarios específicos.

Comentarios de grupo de elementos para :

Comentarios del elemento para :

Para descargar modelos de datos, debe haber iniciado sesión. Por favor iniciar sesión o Registrate gratis.

dbGaP phs001071 NINDS Family-Based Whole-Genome Sequencing to Find HD Modifiers

The dataset provides information about the affection status, number of CAG repeats and general sociodemographic data.

pht005347
Descripción

pht005347

Alias
UMLS CUI [1,1]
C3846158
De-identified Subject ID
Descripción

SUBJECT_ID

Tipo de datos

string

Alias
UMLS CUI [1,1]
C4684638
UMLS CUI [1,2]
C2348585
Individual has HD or not at time of assessment
Descripción

affected

Tipo de datos

text

Alias
UMLS CUI [1,1]
C0522476
UMLS CUI [1,2]
C0449438
UMLS CUI [1,3]
C0020179
UMLS CUI [1,4]
C2985720
Disease onset age
Descripción

age_onset

Tipo de datos

text

Unidades de medida
  • Years
Alias
UMLS CUI [1,1]
C0206132
Years
Subject age at last assessment
Descripción

age_assessed

Tipo de datos

text

Unidades de medida
  • Years
Alias
UMLS CUI [1,1]
C0001779
UMLS CUI [1,2]
C1517741
UMLS CUI [1,3]
C2985720
Years
Gender of participant
Descripción

sex

Tipo de datos

text

Alias
UMLS CUI [1,1]
C0079399
Race of participant
Descripción

race

Tipo de datos

string

Alias
UMLS CUI [1,1]
C0034510
CAG repeat size from one allele (major)
Descripción

CAG_repeat_size_1

Tipo de datos

text

Unidades de medida
  • CAG repeats
Alias
UMLS CUI [1,1]
C3846158
UMLS CUI [1,2]
C0205341
UMLS CUI [1,3]
C0456389
UMLS CUI [1,4]
C0205164
UMLS CUI [1,5]
C0002085
CAG repeat size from one allele (minor)
Descripción

CAG_repeat_size_2

Tipo de datos

text

Unidades de medida
  • CAG repeats
Alias
UMLS CUI [1,1]
C3846158
UMLS CUI [1,2]
C0205341
UMLS CUI [1,3]
C0456389
UMLS CUI [1,4]
C0205165
UMLS CUI [1,5]
C0002085

Similar models

The dataset provides information about the affection status, number of CAG repeats and general sociodemographic data.

Name
Tipo
Description | Question | Decode (Coded Value)
Tipo de datos
Alias
Item Group
pht005347
C3846158 (UMLS CUI [1,1])
SUBJECT_ID
Item
De-identified Subject ID
string
C4684638 (UMLS CUI [1,1])
C2348585 (UMLS CUI [1,2])
Item
Individual has HD or not at time of assessment
text
C0522476 (UMLS CUI [1,1])
C0449438 (UMLS CUI [1,2])
C0020179 (UMLS CUI [1,3])
C2985720 (UMLS CUI [1,4])
Code List
Individual has HD or not at time of assessment
CL Item
Affected (1)
C3274647 (UMLS CUI [1,1])
CL Item
Unaffected (2)
C3274648 (UMLS CUI [1,1])
CL Item
Control (3)
C3274648 (UMLS CUI [1,1])
age_onset
Item
Disease onset age
text
C0206132 (UMLS CUI [1,1])
age_assessed
Item
Subject age at last assessment
text
C0001779 (UMLS CUI [1,1])
C1517741 (UMLS CUI [1,2])
C2985720 (UMLS CUI [1,3])
Item
Gender of participant
text
C0079399 (UMLS CUI [1,1])
Code List
Gender of participant
CL Item
Male (1)
C0086582 (UMLS CUI [1,1])
CL Item
Female (2)
C0086287 (UMLS CUI [1,1])
Item
Race of participant
string
C0034510 (UMLS CUI [1,1])
Code List
Race of participant
CL Item
African American (African American)
CL Item
Asian (Asian)
CL Item
Caucasian (Caucasian)
CL Item
Not applicable (NA)
C1272460 (UMLS CUI [1,1])
CL Item
Unknown (UNK)
Item
CAG repeat size from one allele (major)
text
C3846158 (UMLS CUI [1,1])
C0205341 (UMLS CUI [1,2])
C0456389 (UMLS CUI [1,3])
C0205164 (UMLS CUI [1,4])
C0002085 (UMLS CUI [1,5])
Code List
CAG repeat size from one allele (major)
CL Item
Unknown (0)
Item
CAG repeat size from one allele (minor)
text
C3846158 (UMLS CUI [1,1])
C0205341 (UMLS CUI [1,2])
C0456389 (UMLS CUI [1,3])
C0205165 (UMLS CUI [1,4])
C0002085 (UMLS CUI [1,5])
Code List
CAG repeat size from one allele (minor)
CL Item
Unknown (0)

Utilice este formulario para comentarios, preguntas y sugerencias.

Los campos marcados con * son obligatorios.

Do you need help on how to use the search function? Please watch the corresponding tutorial video for more details and learn how to use the search function most efficiently.

Watch Tutorial