0 Evaluaciones

ID

45715

Descripción

Principal Investigator: Curtis C. Harris, National Institutes of Health, Bethesda, MD, USA MeSH: Lung Neoplasms https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001210 This is a two-stage case-control study designed to evaluate the association between common genetic variants and the risk of lung cancer. The stage 1 studies included 1737 cases and 3602 controls from the following studies: MD Anderson Lung Cancer Epidemiology Study, The Multiethnic Cohort Study (MEC), NCI-MD Lung Cancer-Case Control Study, Northern California Lung Cancer Study, Project CHURCH (Creating a Higher Understanding of Cancer Research δ Community Health), Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO), Southern Community Cohort Study (SCCS), and the Karmanos Cancer Institute at Wayne State University (KCI/WSU). The stage 2 studies included an independent set of 866 cases and 796 controls from the following studies: The Black Women's Health Study (BWHS), The Harvard-MGH Lung Cancer Susceptibility Study (HLCS), MD Anderson Lung Cancer Epidemiology Study, MD Anderson/LBJ Hospital Biorepository, NCI-MD Lung Cancer Case-Control Study, Northern California Lung Cancer Study, Philadelphia Lung Cancer Study on Gene Environment Interactions (Plus-Gene), Southern Community Cohort Study (SCCS), and KCI/WSU.

Link

dbGaP-study=phs001210

Palabras clave

  1. 17/5/23 17/5/23 - Chiara Middel
Titular de derechos de autor

Curtis C. Harris, National Institutes of Health, Bethesda, MD, USA

Subido en

17 de mayo de 2023

DOI

Para solicitar uno, por favor iniciar sesión.

Licencia

Creative Commons BY 4.0

Comentarios del modelo :

Puede comentar sobre el modelo de datos aquí. A través de las burbujas de diálogo en los grupos de elementos y elementos, puede agregar comentarios específicos.

Comentarios de grupo de elementos para :

Comentarios del elemento para :


    Sin comentarios

    Para descargar modelos de datos, debe haber iniciado sesión. Por favor iniciar sesión o Registrate gratis.

    dbGaP phs001210 NCI Lung Cancer and Smoking Phenotypes in African-American Subjects

    Subject ID, sample ID, and sample use variable of participants with or without lung cancer and involved in the "National Cancer Institute (NCI) Study of Lung Cancer and Smoking Phenotypes in African-American Cases and Controls" project.

    pht005962
    Descripción

    pht005962

    Alias
    UMLS CUI [1,1]
    C3846158
    De-identified sample ID
    Descripción

    SAMPLE_ID

    Tipo de datos

    string

    Alias
    UMLS CUI [1,1]
    C4684638
    UMLS CUI [1,2]
    C1299222
    De-identified subject ID
    Descripción

    SUBJECT_ID

    Tipo de datos

    string

    Alias
    UMLS CUI [1,1]
    C4684638
    UMLS CUI [1,2]
    C2348585
    Sample Use
    Descripción

    SAMPLE_USE

    Tipo de datos

    string

    Alias
    UMLS CUI [1,1]
    C2347026
    UMLS CUI [1,2]
    C1524063

    Similar models

    Subject ID, sample ID, and sample use variable of participants with or without lung cancer and involved in the "National Cancer Institute (NCI) Study of Lung Cancer and Smoking Phenotypes in African-American Cases and Controls" project.

    Name
    Tipo
    Description | Question | Decode (Coded Value)
    Tipo de datos
    Alias
    Item Group
    pht005962
    C3846158 (UMLS CUI [1,1])
    SAMPLE_ID
    Item
    De-identified sample ID
    string
    C4684638 (UMLS CUI [1,1])
    C1299222 (UMLS CUI [1,2])
    SUBJECT_ID
    Item
    De-identified subject ID
    string
    C4684638 (UMLS CUI [1,1])
    C2348585 (UMLS CUI [1,2])
    Item
    Sample Use
    string
    C2347026 (UMLS CUI [1,1])
    C1524063 (UMLS CUI [1,2])
    Code List
    Sample Use
    CL Item
    SNP genotypes obtained using standard or custom microarrays (Array_SNP)
    C2347026 (UMLS CUI [1,1])
    C0042153 (UMLS CUI [1,2])
    C0752046 (UMLS CUI [1,3])
    C1449575 (UMLS CUI [1,4])

    Do you need help on how to use the search function? Please watch the corresponding tutorial video for more details and learn how to use the search function most efficiently.

    Watch Tutorial