ID

45701

Descripción

Principal Investigator: Leslie Thompson, PhD, University of California, Irvine, CA, USA MeSH: Amyotrophic Lateral Sclerosis,Muscular Atrophy, Spinal,Spinal Muscular Atrophies of Childhood https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001231 The NeuroLINCS Center is part of the NIH Common Fund's Library of Integrated Network-based Cellular Signatures (LINCS) program, which aims to characterize how a variety of human cells, tissues and the entire organism respond to perturbations by drugs and other molecular factors. As Part of the LINCS program, the NeuroLINCS study concentrates on human brain cells, which are far less understood than other cells in the body. Our initial focus is to produce diseased motor neurons from patients by utilizing high-quality induced pluripotent stem cell (iPSC) lines from Amyotrophic Lateral Sclerosis (ALS) and Spinal Muscular Atrophy (SMA) patients in addition to unaffected normal healthy controls. Using state-of-the-art OMICS methods (genomics, epigenomics, transcriptomics, and proteomics), we intend to create a wealth of cellular data that is patient-specific in the context of their baseline genetic perturbations and in the presence of other genetic and environmental perturbagens (e.g. endoplasmic reticulum stress). The primary data will be used to build cell signatures that convey the key features that distinguish the state of a cell and determine its behavior. Ultimately, the analysis of these datasets will lead to the identification of a network of unique signatures relevant to each of these motor neuron diseases. The datasets represented in this study are generated from assays interrogating RNA expression (RNA-seq), chromatin accessibility (ATAC-seq) and whole genome sequencing.

Link

dbGaP-study=phs001231

Palabras clave

  1. 14/5/23 14/5/23 - Chiara Middel
Titular de derechos de autor

Leslie Thompson, PhD, University of California, Irvine, CA, USA

Subido en

14 de mayo de 2023

DOI

Para solicitar uno, por favor iniciar sesión.

Licencia

Creative Commons BY 4.0

Comentarios del modelo :

Puede comentar sobre el modelo de datos aquí. A través de las burbujas de diálogo en los grupos de elementos y elementos, puede agregar comentarios específicos.

Comentarios de grupo de elementos para :

Comentarios del elemento para :

Para descargar modelos de datos, debe haber iniciado sesión. Por favor iniciar sesión o Registrate gratis.

dbGaP phs001231 NeuroLINCS

Eligibility Criteria

Inclusion and exclusion criteria
Descripción

Inclusion and exclusion criteria

Alias
UMLS CUI [1,1]
C1512693
UMLS CUI [1,2]
C0680251
Case samples were included if clinical history description included ALS (C9, SOD1 or sporadic) or SMA (SMN 1 deletion) diagnosis. Control cohort had no history of ALS or SMA phenotype.
Descripción

Elig.phs001231.v2.p1.1

Tipo de datos

boolean

Alias
UMLS CUI [1,1]
C1512693
UMLS CUI [1,2]
C0262926
UMLS CUI [1,3]
C0002736
UMLS CUI [1,4]
C0026847
UMLS CUI [1,5]
C0011900
UMLS CUI [2,1]
C0009932
UMLS CUI [2,2]
C1298908
UMLS CUI [2,3]
C0262926
UMLS CUI [2,4]
C0002736
UMLS CUI [2,5]
C0026847

Similar models

Eligibility Criteria

Name
Tipo
Description | Question | Decode (Coded Value)
Tipo de datos
Alias
Item Group
Inclusion and exclusion criteria
C1512693 (UMLS CUI [1,1])
C0680251 (UMLS CUI [1,2])
Elig.phs001231.v2.p1.1
Item
Case samples were included if clinical history description included ALS (C9, SOD1 or sporadic) or SMA (SMN 1 deletion) diagnosis. Control cohort had no history of ALS or SMA phenotype.
boolean
C1512693 (UMLS CUI [1,1])
C0262926 (UMLS CUI [1,2])
C0002736 (UMLS CUI [1,3])
C0026847 (UMLS CUI [1,4])
C0011900 (UMLS CUI [1,5])
C0009932 (UMLS CUI [2,1])
C1298908 (UMLS CUI [2,2])
C0262926 (UMLS CUI [2,3])
C0002736 (UMLS CUI [2,4])
C0026847 (UMLS CUI [2,5])

Utilice este formulario para comentarios, preguntas y sugerencias.

Los campos marcados con * son obligatorios.

Do you need help on how to use the search function? Please watch the corresponding tutorial video for more details and learn how to use the search function most efficiently.

Watch Tutorial