ID

45699

Description

Principal Investigator: Ann Falsey, MD, University of Rochester, Rochester, NY, USA MeSH: Respiratory Tract Infections https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001248 Accurate tests for microbiologic diagnosis of lower respiratory tract infections (LRTI) are needed. Gene expression profiling of whole blood represents a powerful new approach for analysis of the host response during respiratory infection that can be used to supplement pathogen detection testing. Using qPCR, we prospectively validated the differential expression of 10 genes previously shown to discriminate bacterial and non-bacterial LRTI confirming the utility of this approach. In addition, a novel approach using RNAseq analysis identified 141 genes differentially expressed in LRTI subjects with bacterial infection. Using "pathway-informed" dimension reduction, we identified a novel 11 gene set (selected from lymphocyte, α-linoleic acid metabolism, and IGF regulation pathways) and demonstrated a predictive accuracy for bacterial LRTI (nested CV-AUC=0.87). RNAseq represents a new and an unbiased tool to evaluate host gene expression for the diagnosis of LRTI.

Lien

dbGaP study = phs001248

Mots-clés

  1. 12/05/2023 12/05/2023 - Simon Heim
Détendeur de droits

Ann Falsey, MD, University of Rochester, Rochester, NY, USA

Téléchargé le

12 mai 2023

DOI

Pour une demande vous connecter.

Licence

Creative Commons BY 4.0

Modèle Commentaires :

Ici, vous pouvez faire des commentaires sur le modèle. À partir des bulles de texte, vous pouvez laisser des commentaires spécifiques sur les groupes Item et les Item.

Groupe Item commentaires pour :

Item commentaires pour :

Vous devez être connecté pour pouvoir télécharger des formulaires. Veuillez vous connecter ou s’inscrire gratuitement.

dbGaP phs001248 Gene Array to Predict Bacterial Infection with in Respiratory Illness

The subject consent data table contains subject IDs, consent group information, and subject aliases.

pht006092
Description

pht006092

Alias
UMLS CUI [1,1]
C3846158
Unique Identifier
Description

ParticipantId

Type de données

string

Alias
UMLS CUI [1,1]
C2348585
Consent group as determined by DAC
Description

CONSENT

Type de données

text

Alias
UMLS CUI [1,1]
C0021430
UMLS CUI [1,2]
C0441833
Source repository where subjects originate
Description

SUBJECT_SOURCE

Type de données

string

Alias
UMLS CUI [1,1]
C3847505
UMLS CUI [1,2]
C0449416
UMLS CUI [1,3]
C0681850
Subject ID used in the Source Repository
Description

SOURCE_SUBJECT_ID

Type de données

string

Alias
UMLS CUI [1,1]
C2348585
UMLS CUI [1,2]
C3847505
UMLS CUI [1,3]
C0449416

Similar models

The subject consent data table contains subject IDs, consent group information, and subject aliases.

Name
Type
Description | Question | Decode (Coded Value)
Type de données
Alias
Item Group
pht006092
C3846158 (UMLS CUI [1,1])
ParticipantId
Item
Unique Identifier
string
C2348585 (UMLS CUI [1,1])
Item
Consent group as determined by DAC
text
C0021430 (UMLS CUI [1,1])
C0441833 (UMLS CUI [1,2])
Code List
Consent group as determined by DAC
CL Item
Health/Medical/Biomedical (IRB, NPU) (HMB-IRB-NPU) (1)
SUBJECT_SOURCE
Item
Source repository where subjects originate
string
C3847505 (UMLS CUI [1,1])
C0449416 (UMLS CUI [1,2])
C0681850 (UMLS CUI [1,3])
SOURCE_SUBJECT_ID
Item
Subject ID used in the Source Repository
string
C2348585 (UMLS CUI [1,1])
C3847505 (UMLS CUI [1,2])
C0449416 (UMLS CUI [1,3])

Utilisez ce formulaire pour les retours, les questions et les améliorations suggérées.

Les champs marqués d’un * sont obligatoires.

Do you need help on how to use the search function? Please watch the corresponding tutorial video for more details and learn how to use the search function most efficiently.

Watch Tutorial