ID

45699

Beschreibung

Principal Investigator: Ann Falsey, MD, University of Rochester, Rochester, NY, USA MeSH: Respiratory Tract Infections https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001248 Accurate tests for microbiologic diagnosis of lower respiratory tract infections (LRTI) are needed. Gene expression profiling of whole blood represents a powerful new approach for analysis of the host response during respiratory infection that can be used to supplement pathogen detection testing. Using qPCR, we prospectively validated the differential expression of 10 genes previously shown to discriminate bacterial and non-bacterial LRTI confirming the utility of this approach. In addition, a novel approach using RNAseq analysis identified 141 genes differentially expressed in LRTI subjects with bacterial infection. Using "pathway-informed" dimension reduction, we identified a novel 11 gene set (selected from lymphocyte, α-linoleic acid metabolism, and IGF regulation pathways) and demonstrated a predictive accuracy for bacterial LRTI (nested CV-AUC=0.87). RNAseq represents a new and an unbiased tool to evaluate host gene expression for the diagnosis of LRTI.

Link

dbGaP study = phs001248

Stichworte

  1. 12.05.23 12.05.23 - Simon Heim
Rechteinhaber

Ann Falsey, MD, University of Rochester, Rochester, NY, USA

Hochgeladen am

12. Mai 2023

DOI

Für eine Beantragung loggen Sie sich ein.

Lizenz

Creative Commons BY 4.0

Modell Kommentare :

Hier können Sie das Modell kommentieren. Über die Sprechblasen an den Itemgruppen und Items können Sie diese spezifisch kommentieren.

Itemgroup Kommentare für :

Item Kommentare für :

Um Formulare herunterzuladen müssen Sie angemeldet sein. Bitte loggen Sie sich ein oder registrieren Sie sich kostenlos.

dbGaP phs001248 Gene Array to Predict Bacterial Infection with in Respiratory Illness

The subject consent data table contains subject IDs, consent group information, and subject aliases.

pht006092
Beschreibung

pht006092

Alias
UMLS CUI [1,1]
C3846158
Unique Identifier
Beschreibung

ParticipantId

Datentyp

string

Alias
UMLS CUI [1,1]
C2348585
Consent group as determined by DAC
Beschreibung

CONSENT

Datentyp

text

Alias
UMLS CUI [1,1]
C0021430
UMLS CUI [1,2]
C0441833
Source repository where subjects originate
Beschreibung

SUBJECT_SOURCE

Datentyp

string

Alias
UMLS CUI [1,1]
C3847505
UMLS CUI [1,2]
C0449416
UMLS CUI [1,3]
C0681850
Subject ID used in the Source Repository
Beschreibung

SOURCE_SUBJECT_ID

Datentyp

string

Alias
UMLS CUI [1,1]
C2348585
UMLS CUI [1,2]
C3847505
UMLS CUI [1,3]
C0449416

Ähnliche Modelle

The subject consent data table contains subject IDs, consent group information, and subject aliases.

Name
Typ
Description | Question | Decode (Coded Value)
Datentyp
Alias
Item Group
pht006092
C3846158 (UMLS CUI [1,1])
ParticipantId
Item
Unique Identifier
string
C2348585 (UMLS CUI [1,1])
Item
Consent group as determined by DAC
text
C0021430 (UMLS CUI [1,1])
C0441833 (UMLS CUI [1,2])
Code List
Consent group as determined by DAC
CL Item
Health/Medical/Biomedical (IRB, NPU) (HMB-IRB-NPU) (1)
SUBJECT_SOURCE
Item
Source repository where subjects originate
string
C3847505 (UMLS CUI [1,1])
C0449416 (UMLS CUI [1,2])
C0681850 (UMLS CUI [1,3])
SOURCE_SUBJECT_ID
Item
Subject ID used in the Source Repository
string
C2348585 (UMLS CUI [1,1])
C3847505 (UMLS CUI [1,2])
C0449416 (UMLS CUI [1,3])

Benutzen Sie dieses Formular für Rückmeldungen, Fragen und Verbesserungsvorschläge.

Mit * gekennzeichnete Felder sind notwendig.

Benötigen Sie Hilfe bei der Suche? Um mehr Details zu erfahren und die Suche effektiver nutzen zu können schauen Sie sich doch das entsprechende Video auf unserer Tutorial Seite an.

Zum Video