ID

45699

Descrição

Principal Investigator: Ann Falsey, MD, University of Rochester, Rochester, NY, USA MeSH: Respiratory Tract Infections https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001248 Accurate tests for microbiologic diagnosis of lower respiratory tract infections (LRTI) are needed. Gene expression profiling of whole blood represents a powerful new approach for analysis of the host response during respiratory infection that can be used to supplement pathogen detection testing. Using qPCR, we prospectively validated the differential expression of 10 genes previously shown to discriminate bacterial and non-bacterial LRTI confirming the utility of this approach. In addition, a novel approach using RNAseq analysis identified 141 genes differentially expressed in LRTI subjects with bacterial infection. Using "pathway-informed" dimension reduction, we identified a novel 11 gene set (selected from lymphocyte, α-linoleic acid metabolism, and IGF regulation pathways) and demonstrated a predictive accuracy for bacterial LRTI (nested CV-AUC=0.87). RNAseq represents a new and an unbiased tool to evaluate host gene expression for the diagnosis of LRTI.

Link

dbGaP study = phs001248

Palavras-chave

  1. 12/05/2023 12/05/2023 - Simon Heim
Titular dos direitos

Ann Falsey, MD, University of Rochester, Rochester, NY, USA

Transferido a

12 de maio de 2023

DOI

Para um pedido faça login.

Licença

Creative Commons BY 4.0

Comentários do modelo :

Aqui pode comentar o modelo. Pode comentá-lo especificamente através dos balões de texto nos grupos de itens e itens.

Comentários do grupo de itens para :

Comentários do item para :

Para descarregar formulários, precisa de ter uma sessão iniciada. Por favor faça login ou registe-se gratuitamente.

dbGaP phs001248 Gene Array to Predict Bacterial Infection with in Respiratory Illness

The subject consent data table contains subject IDs, consent group information, and subject aliases.

pht006092
Descrição

pht006092

Alias
UMLS CUI [1,1]
C3846158
Unique Identifier
Descrição

ParticipantId

Tipo de dados

string

Alias
UMLS CUI [1,1]
C2348585
Consent group as determined by DAC
Descrição

CONSENT

Tipo de dados

text

Alias
UMLS CUI [1,1]
C0021430
UMLS CUI [1,2]
C0441833
Source repository where subjects originate
Descrição

SUBJECT_SOURCE

Tipo de dados

string

Alias
UMLS CUI [1,1]
C3847505
UMLS CUI [1,2]
C0449416
UMLS CUI [1,3]
C0681850
Subject ID used in the Source Repository
Descrição

SOURCE_SUBJECT_ID

Tipo de dados

string

Alias
UMLS CUI [1,1]
C2348585
UMLS CUI [1,2]
C3847505
UMLS CUI [1,3]
C0449416

Similar models

The subject consent data table contains subject IDs, consent group information, and subject aliases.

Name
Tipo
Description | Question | Decode (Coded Value)
Tipo de dados
Alias
Item Group
pht006092
C3846158 (UMLS CUI [1,1])
ParticipantId
Item
Unique Identifier
string
C2348585 (UMLS CUI [1,1])
Item
Consent group as determined by DAC
text
C0021430 (UMLS CUI [1,1])
C0441833 (UMLS CUI [1,2])
Code List
Consent group as determined by DAC
CL Item
Health/Medical/Biomedical (IRB, NPU) (HMB-IRB-NPU) (1)
SUBJECT_SOURCE
Item
Source repository where subjects originate
string
C3847505 (UMLS CUI [1,1])
C0449416 (UMLS CUI [1,2])
C0681850 (UMLS CUI [1,3])
SOURCE_SUBJECT_ID
Item
Subject ID used in the Source Repository
string
C2348585 (UMLS CUI [1,1])
C3847505 (UMLS CUI [1,2])
C0449416 (UMLS CUI [1,3])

Use este formulário para feedback, perguntas e sugestões de aperfeiçoamento.

Campos marcados com * são obrigatórios.

Do you need help on how to use the search function? Please watch the corresponding tutorial video for more details and learn how to use the search function most efficiently.

Watch Tutorial