0 Valutazioni

ID

45540

Descrizione

Principal Investigator: Anna Szekely, PhD, Institute of Psychology, Eötvös Loránd University University, Budapest, Hungary MeSH: Anxiety,Depression https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000713 GDNF gene variants were studied as possible risk factors of depression or anxiety on a young sample. The association study involved eight (rs1981844, rs3812047, rs3096140, rs2973041, rs2910702, rs1549250, rs2973050 and rs11111) GDNF single nucleotide polymorphisms and anxiety and depression scores measured by the Hospital Anxiety and Depression Scale (HADS) on 708 Caucasian young adults with no psychiatric history. Results provided significant effects of two single nucleotide polymorphisms on anxiety scores following the Bonferroni correction for multiple testing (p=0.00070 and p=0.00138 for rs3812047 and rs3096140, respectively). Haplotype analysis confirmed the role of these SNPs (p=0.00029). A significant sex-gene interaction was also observed since the effect of the rs3812047 A allele as a risk factor of anxiety was more pronounced in males. This is the first demonstration of a significant association between the GDNF gene and mood characteristics demonstrated by the association of two SNPs of the GDNF gene (rs3812047 and rs3096140) and individual variability of anxiety using self-report data from a non-clinical sample. *Reprinted from Kotyuk et. al., 2013* (Kotyuk, E., Keszler, G., Nemeth, N., Ronai, Z., Sasvari-Szekely, M., and Szekely, A. (2013). Glial Cell Line-Derived Neurotrophic Factor (GDNF) as a Novel Candidate Gene of Anxiety. PLoS One,8, (12) PMID: 24324616), *with permission from Publisher* *(All content of articles published in PLOS journals is open access. You can read about our open access license here: http://www.plos.org/about/open-access/. To summarize, this license allows you to download, reuse, reprint, modify, distribute, and/or copy articles or images in PLOS journals, so long as the original creators are credited (e.g., including the article's citation and/or the image credit); Laura Perry; Staff EO;PLOS ONE)*

collegamento

dbGaP study = phs000713

Keywords

  1. 03/01/23 03/01/23 - Simon Heim
Titolare del copyright

Anna Szekely, PhD, Institute of Psychology, Eötvös Loránd University University, Budapest, Hungary

Caricato su

3 gennaio 2023

DOI

Per favore, per richiedere un accesso.

Licenza

Creative Commons BY 4.0

Commenti del modello :

Puoi commentare il modello dati qui. Tramite i fumetti nei gruppi di articoli e articoli è possibile aggiungere commenti a quelli in modo specifico.

Commenti del gruppo di articoli per :

Commenti dell'articolo per :


    Non ci sono commenti

    Per scaricare i modelli di dati devi essere registrato. Per favore accesso o registrati GRATIS.

    dbGaP phs000713 GDNF and Anxiety

    Subject - Sample Mapping

    pht004272
    Descrizione

    pht004272

    Alias
    UMLS CUI [1,1]
    C3846158
    Subject ID
    Descrizione

    SUBJECT_ID

    Tipo di dati

    string

    Alias
    UMLS CUI [1,1]
    C2348585
    Sample ID
    Descrizione

    SAMPLE_ID

    Tipo di dati

    string

    Alias
    UMLS CUI [1,1]
    C1299222
    Sample Use
    Descrizione

    SAMPLE_USE

    Tipo di dati

    text

    Alias
    UMLS CUI [1,1]
    C2347026
    UMLS CUI [1,2]
    C1524063

    Similar models

    Subject - Sample Mapping

    Name
    genere
    Description | Question | Decode (Coded Value)
    Tipo di dati
    Alias
    Item Group
    pht004272
    C3846158 (UMLS CUI [1,1])
    SUBJECT_ID
    Item
    Subject ID
    string
    C2348585 (UMLS CUI [1,1])
    SAMPLE_ID
    Item
    Sample ID
    string
    C1299222 (UMLS CUI [1,1])
    Item
    Sample Use
    text
    C2347026 (UMLS CUI [1,1])
    C1524063 (UMLS CUI [1,2])
    Code List
    Sample Use
    CL Item
    SNP genotyes obtained using PCR amplified DNA (PCR_DNA_SNP)

    Do you need help on how to use the search function? Please watch the corresponding tutorial video for more details and learn how to use the search function most efficiently.

    Watch Tutorial