ID

45448

Descrição

Principal Investigator: Chris Amos, PhD, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA MeSH: Lung Neoplasms https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000753 This research builds upon an extensive resource of a case-control study that has been ongoing at the UT MD Anderson Cancer Center since 1991. To identify risk variants for lung cancer, we conducted a genome-wide association study. Cases are newly diagnosed, histologically-confirmed patients presenting at MD Anderson Cancer and who had not previously received treatment other than surgery. Controls are healthy individuals seen for routine care at Kelsey-Seybold Clinics, the largest physician group-practice plan in the Houston Metropolitan area. This lung GWAS led to the identification of a susceptibility locus for lung cancer at 15q25.1. We used data from 315,450 tagging SNPs in 1,154 current and former (ever) smoking cases of European ancestry and 1,137 frequency-matched, ever-smoking controls from Houston, Texas in the discovery followed by the replication of the ten SNPs most significantly associated with lung cancer in an additional 711 cases and 632 controls from Texas and 2,013 cases and 3,062 controls from the UK. Two SNPs, rs1051730 and rs8034191, were significantly associated with risk of lung cancer with combined analysis yielded odds ratios of 1.32 (P 1X10-17) for both SNPs. These two SNPs mapped to a region of strong linkage disequilibrium within 15q25.1 containing PSMA4 and the nicotinic acetylcholine receptor subunit genes CHRNA3 and CHRNA5. (Nat Genet. 2008 May;40(5):616-22. PMID:18385676)

Link

dbGaP-study=phs000753

Palavras-chave

  1. 07/12/2022 07/12/2022 - Chiara Middel
Titular dos direitos

Chris Amos, PhD, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA

Transferido a

7 de dezembro de 2022

DOI

Para um pedido faça login.

Licença

Creative Commons BY 4.0

Comentários do modelo :

Aqui pode comentar o modelo. Pode comentá-lo especificamente através dos balões de texto nos grupos de itens e itens.

Comentários do grupo de itens para :

Comentários do item para :


Sem comentários

Para descarregar formulários, precisa de ter uma sessão iniciada. Por favor faça login ou registe-se gratuitamente.

dbGaP phs000753 High Density SNP Association Analysis of Lung Cancer

Sample ID, body site where sample was obtained, analyte type, and tumor status of samples obtained from participants with or without lung cancer and involved in the "High Density SNP Association Analysis of Lung Cancer" project.

pht003877
Descrição

pht003877

Alias
UMLS CUI [1,1]
C3846158
De-identified sample ID
Descrição

SAMPID

Tipo de dados

string

Alias
UMLS CUI [1,1]
C4684638
UMLS CUI [1,2]
C1299222
Body site where sample was collected
Descrição

BODY_SITE

Tipo de dados

string

Alias
UMLS CUI [1,1]
C0449705
Analyte type
Descrição

ANALYTE_TYPE

Tipo de dados

string

Alias
UMLS CUI [1,1]
C4744818
Tumor status
Descrição

IS_TUMOR

Tipo de dados

text

Alias
UMLS CUI [1,1]
C0475752

Similar models

Sample ID, body site where sample was obtained, analyte type, and tumor status of samples obtained from participants with or without lung cancer and involved in the "High Density SNP Association Analysis of Lung Cancer" project.

Name
Tipo
Description | Question | Decode (Coded Value)
Tipo de dados
Alias
Item Group
pht003877
C3846158 (UMLS CUI [1,1])
SAMPID
Item
De-identified sample ID
string
C4684638 (UMLS CUI [1,1])
C1299222 (UMLS CUI [1,2])
BODY_SITE
Item
Body site where sample was collected
string
C0449705 (UMLS CUI [1,1])
ANALYTE_TYPE
Item
Analyte type
string
C4744818 (UMLS CUI [1,1])
Item
Tumor status
text
C0475752 (UMLS CUI [1,1])
Code List
Tumor status
CL Item
Is not a tumor (N)
C0027651 (UMLS CUI [1,1])
C1518422 (UMLS CUI [1,2])
CL Item
Is Tumor (Y)
C0027651 (UMLS CUI [1,1])

Use este formulário para feedback, perguntas e sugestões de aperfeiçoamento.

Campos marcados com * são obrigatórios.

Do you need help on how to use the search function? Please watch the corresponding tutorial video for more details and learn how to use the search function most efficiently.

Watch Tutorial