ID

45395

Beskrivning

Principal Investigator: Paivi Pajukanta, MD, PhD, University of California, Los Angeles (UCLA), Los Angeles, CA, USA MeSH: Hypertriglyceridemia https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000618 Coronary artery disease (CAD) is the number one cause of death and mortality world-wide. High levels of serum triglycerides (TGs) and low levels of serum high-density lipoprotein cholesterol (HDL-C) are major risk factors for CAD. Previous epidemiological studies have shown that these two lipid disturbances are highly common dyslipidemias in Mexicans. However, the genetic factors underlying high serum TGs and low HDL-C are underinvestigated and poorly identified in Mexicans. As the Mexican-American and the genetically related Latin-American populations represent the fastest growing minority in the United States, elucidation of the unknown genetic factors influencing the increased susceptibility of Mexicans to these common dyslipidemias is of great relevance to these U.S. minorities and the American healthcare system. This study is a research collaboration between investigators at the University of California, Los Angeles (UCLA) and Instituto Nacional de Ciencias Médicas y Nutrición (INCMN), Mexico City, to perform a two-stage genome-wide association study (GWAS) for hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C) in Mexicans (Weissglas-Volkov et al. 2013, PMID: 23505323). This study was funded by an RO1 grant from NIH/NHLBI (PI Paivi Pajukanta; PI of the subaward Teresa Tusie-Luna). In stage 1 of the GWAS, we tested all GWAS SNPs from the Illumina Infinium Human610-Quad platform that passed quality control for association in ~2,200 hypertriglyceridemia cases and controls. In stage 2, we genotyped the ~1,200 positive signals of stage 1 in additional ~2,200 hypertriglyceridemia cases and controls, and performed a combined analysis of the two stages to identify genome-wide significant variants. The subjects were recruited at the INCMN. The DNA isolation and clinical laboratory measurements of the case-control study samples were performed at INCMN using standardized procedures. Genotyping and statistical analyses of the data were performed at UCLA. A summary of this GWAS can be found in Weissglas-Volkov et al. 2013 Journal of Medical Genetics, PMID: 23505323. Briefly, using the two-stage GWAS design, we identified a novel Mexican-specific genome-wide significant locus for serum TG levels close to the Niemann-Pick type C1 protein (NPC1) gene (Weissglas-Volkov et al. 2013, PMID: 23505323). Of the European lipid GWAS loci, three TG loci (APOA5, GCKR, and LPL) and four HDL-C loci (ABCA1, CETP, LIPC and LOC55908) resulted in genome-wide significant signals in Mexicans. Furthermore, our cross-ethnic mapping narrowed three European TG GWAS loci, APOA5, MLXIPL, and CILP2 that exhibited long range LD and a large number of candidate SNPs in the European GWAS scan. In the apolipoprotein A1C3A4A5 gene cluster region, the cross-ethnic fine mapping and LD comparisons reduced the number of candidate variants to one SNP, rs964184. We also found that although 52% of the associations from European lipid GWAS meta-analysis could be generalized to Mexicans, in 82% of the European GWAS loci, a different variant other than the European lead SNP provided the statistically strongest evidence of association in the Mexican scan (Weissglas-Volkov et al. 2013, PMID: 23505323). Taken together, our Mexican GWAS for lipids identified a novel Mexican-specific locus for high serum TGs; restricted three European GWAS loci; and investigated which European lipid GWAS variants extend to the Mexican population (Weissglas-Volkov et al. 2013, PMID: 23505323). This NHLBI sponsored RO1 project aimed to identify genetic variants contributing to serum lipid levels in Mexicans. In addition to de-identified genome wide genotypic data, a selected list of de-identified phenotypic data related to hypertriglyceridemia and related metabolic traits are also available in dbGaP.

Länk

dbGaP study = phs000618

Nyckelord

  1. 2022-11-15 2022-11-15 - Simon Heim
Rättsinnehavare

Paivi Pajukanta, MD, PhD, University of California, Los Angeles (UCLA), Los Angeles, CA, USA

Uppladdad den

15 november 2022

DOI

För en begäran logga in.

Licens

Creative Commons BY 4.0

Modellkommentarer :

Här kan du kommentera modellen. Med hjälp av pratbubblor i Item-grupperna och Item kan du lägga in specifika kommentarer.

Itemgroup-kommentar för :

Item-kommentar för :

Du måste vara inloggad för att kunna ladda ner formulär. Var vänlig logga in eller registrera dig utan kostnad.

dbGaP phs000618 Hypertriglyceridemia Study in Mexicans

Eligibility Criteria

Inclusion and exclusion criteria
Beskrivning

Inclusion and exclusion criteria

Alias
UMLS CUI [1,1]
C1512693
UMLS CUI [1,2]
C0680251
*Inclusion criteria:*
Beskrivning

*Inclusion criteria:*

Datatyp

boolean

Alias
UMLS CUI [1,1]
C1512693
Cases: Fasting serum triglycerides (TGs) > 2.3 mmol/L (200 mg/dL)
Beskrivning

Cases: Fasting serum triglycerides (TGs) > 2.3 mmol/L (200 mg/dL)

Datatyp

boolean

Alias
UMLS CUI [1,1]
C1512693
UMLS CUI [1,2]
C1706256
UMLS CUI [1,3]
C0582824
Controls: Fasting serum TGs < 1.7 mmol/L (150 mg/dL)
Beskrivning

Controls: Fasting serum TGs < 1.7 mmol/L (150 mg/dL)

Datatyp

boolean

Alias
UMLS CUI [1,1]
C1512693
UMLS CUI [1,2]
C0009932
UMLS CUI [1,3]
C0582824
*Exclusion criteria:*
Beskrivning

*Exclusion criteria:*

Datatyp

boolean

Alias
UMLS CUI [1,1]
C0680251
Cases: Type 2 diabetes, morbid obesity (BMI > 40 kg/m<sup>2</sup>), and fasting serum TGs > 6.8 mmol/L (600 mg/dL)
Beskrivning

Cases: Type 2 diabetes, morbid obesity (BMI > 40 kg/m<sup>2</sup>), and fasting serum TGs > 6.8 mmol/L (600 mg/dL)

Datatyp

boolean

Alias
UMLS CUI [1,1]
C0680251
UMLS CUI [1,2]
C1706256
UMLS CUI [1,3]
C4014362
UMLS CUI [1,4]
C0028756
UMLS CUI [1,5]
C1305855
UMLS CUI [1,6]
C0582824
Controls: The use of lipid lowering drugs, type 2 diabetes, and morbid obesity (BMI > 40 kg/m<sup>2</sup>)
Beskrivning

Controls: The use of lipid lowering drugs, type 2 diabetes, and morbid obesity (BMI > 40 kg/m<sup>2</sup>)

Datatyp

boolean

Alias
UMLS CUI [1,1]
C0680251
UMLS CUI [1,2]
C0009932
UMLS CUI [1,3]
C0086440
UMLS CUI [1,4]
C4014362
UMLS CUI [1,5]
C0028756
UMLS CUI [1,6]
C1305855

Similar models

Eligibility Criteria

Name
Typ
Description | Question | Decode (Coded Value)
Datatyp
Alias
Item Group
Inclusion and exclusion criteria
C1512693 (UMLS CUI [1,1])
C0680251 (UMLS CUI [1,2])
*Inclusion criteria:*
Item
*Inclusion criteria:*
boolean
C1512693 (UMLS CUI [1,1])
Cases: Fasting serum triglycerides (TGs) > 2.3 mmol/L (200 mg/dL)
Item
Cases: Fasting serum triglycerides (TGs) > 2.3 mmol/L (200 mg/dL)
boolean
C1512693 (UMLS CUI [1,1])
C1706256 (UMLS CUI [1,2])
C0582824 (UMLS CUI [1,3])
Controls: Fasting serum TGs < 1.7 mmol/L (150 mg/dL)
Item
Controls: Fasting serum TGs < 1.7 mmol/L (150 mg/dL)
boolean
C1512693 (UMLS CUI [1,1])
C0009932 (UMLS CUI [1,2])
C0582824 (UMLS CUI [1,3])
*Exclusion criteria:*
Item
*Exclusion criteria:*
boolean
C0680251 (UMLS CUI [1,1])
Cases: Type 2 diabetes, morbid obesity (BMI > 40 kg/m<sup>2</sup>), and fasting serum TGs > 6.8 mmol/L (600 mg/dL)
Item
Cases: Type 2 diabetes, morbid obesity (BMI > 40 kg/m<sup>2</sup>), and fasting serum TGs > 6.8 mmol/L (600 mg/dL)
boolean
C0680251 (UMLS CUI [1,1])
C1706256 (UMLS CUI [1,2])
C4014362 (UMLS CUI [1,3])
C0028756 (UMLS CUI [1,4])
C1305855 (UMLS CUI [1,5])
C0582824 (UMLS CUI [1,6])
Controls: The use of lipid lowering drugs, type 2 diabetes, and morbid obesity (BMI > 40 kg/m<sup>2</sup>)
Item
Controls: The use of lipid lowering drugs, type 2 diabetes, and morbid obesity (BMI > 40 kg/m<sup>2</sup>)
boolean
C0680251 (UMLS CUI [1,1])
C0009932 (UMLS CUI [1,2])
C0086440 (UMLS CUI [1,3])
C4014362 (UMLS CUI [1,4])
C0028756 (UMLS CUI [1,5])
C1305855 (UMLS CUI [1,6])

Använd detta formulär för feedback, frågor och förslag på förbättringar.

Fält markerade med * är obligatoriska.

Do you need help on how to use the search function? Please watch the corresponding tutorial video for more details and learn how to use the search function most efficiently.

Watch Tutorial