ID

45368

Descrizione

Principal Investigator: David Gutmann, MD, PhD, Washington University School of Medicine, St. Louis, MO, USA MeSH: Pilocytic Astrocytoma,Glioma,Neurofibromatosis Type 1 https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000563 Neurofibromatosis type 1 (NF1) inherited cancer predisposition syndrome is one of the most common autosomal dominant tumor predisposition syndromes in which affected individuals develop brain tumors. These low-grade glial neoplasms (pilocytic astrocytomas) typically arise in children younger than 7 years of age and are hypothesized to result from a combination of germline and acquired somatic NF1 tumor suppressor gene mutations. In this study, whole genome sequence analysis was performed on three NF1-associated pilocytic astrocytoma tumors (NF1-PA) and matched normal blood samples to establish the genomic landscape of NF1-PA. These data support the existence of multiple distinct mechanisms (mutation, LOH, and methylation) underlying somatic NF1 inactivation in NF1-PA tumors.

collegamento

dbGap-study=phs000563

Keywords

  1. 04/11/22 04/11/22 - Chiara Middel
Titolare del copyright

David Gutmann, MD, PhD, Washington University School of Medicine, St. Louis, MO, USA

Caricato su

4 novembre 2022

DOI

Per favore, per richiedere un accesso.

Licenza

Creative Commons BY 4.0

Commenti del modello :

Puoi commentare il modello dati qui. Tramite i fumetti nei gruppi di articoli e articoli è possibile aggiungere commenti a quelli in modo specifico.

Commenti del gruppo di articoli per :

Commenti dell'articolo per :

Per scaricare i modelli di dati devi essere registrato. Per favore accesso o registrati GRATIS.

dbGaP phs000563 Pilocytic Astrocytoma in NF1

Similar models

Si prega di utilizzare questo modulo per feedback, domande e suggerimenti per miglioramenti.

I campi contrassegnati da * sono obbligatori.

Do you need help on how to use the search function? Please watch the corresponding tutorial video for more details and learn how to use the search function most efficiently.

Watch Tutorial