0 Bedömningar

ID

45030

Beskrivning

Principal Investigator: Arul Chinnaiyan, M.D., Ph.D, University of Michigan MeSH: prostate cancer https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000443 Noncoding RNAs (ncRNAs) are emerging as key molecules in human cancer, with the potential to serve as novel markers of disease and to reveal uncharacterized aspects of tumor biology. Here we discover 121 unannotated prostate cancer-associated ncRNA transcripts (PCATs) by *ab initio* assembly of high-throughput sequencing of polyA+ RNA (RNA-Seq) from a cohort of 102 prostate tissues and cells lines. We characterized one ncRNA, PCAT-1, as a prostate-specific regulator of cell proliferation and show that it is a target of the polycomb repressive complex 2 (PRC2). We further found that patterns of PCAT-1 and PRC2 expression stratified patient tissues into molecular subtypes distinguished by expression signatures of PCAT-1-repressed target genes. Taken together, our findings suggest that PCAT-1 is a transcriptional repressor implicated in a subset of prostate cancer patients. These findings establish the utility of RNA-Seq to identify disease-associated ncRNAs that may improve the stratification of cancer subtypes.

Länk

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000443

Nyckelord

  1. 2022-07-22 2022-07-22 - Chiara Middel
  2. 2022-07-25 2022-07-25 - Martin Dugas
  3. 2022-10-12 2022-10-12 - Adrian Schulz
  4. 2025-01-29 2025-01-29 - Akane Nishihara
Rättsinnehavare

Arul Chinnaiyan, M.D., Ph.D, University of Michigan

Uppladdad den

25 juli 2022

DOI

För en begäran logga in.

Licens

Creative Commons BY 4.0

Modellkommentarer :

Här kan du kommentera modellen. Med hjälp av pratbubblor i Item-grupperna och Item kan du lägga in specifika kommentarer.

Itemgroup-kommentar för :

Item-kommentar för :


    Inga kommentarer

    Du måste vara inloggad för att kunna ladda ner formulär. Var vänlig logga in eller registrera dig utan kostnad.

    dbGaP phs000443 Molecular Profiling of Cancer

    Subject ID, consent group, and sources of subjects affected with prostate cancer and involved in the "Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression" project.

    pht002530
    Beskrivning

    pht002530

    Subject ID
    Beskrivning

    SUBJID

    Datatyp

    string

    Alias
    UMLS CUI [1,1]
    C2348585
    Consent group as determined by DAC
    Beskrivning

    CONSENT

    Datatyp

    text

    Alias
    UMLS CUI [1,1]
    C0021430
    Source repository where subjects originate
    Beskrivning

    SUBJ_SOURCE

    Datatyp

    string

    Alias
    UMLS CUI [1,1]
    C0449416
    UMLS CUI [1,2]
    C3847505
    Subject ID in source repository
    Beskrivning

    SOURCE_SUBJID

    Datatyp

    string

    Alias
    UMLS CUI [1,1]
    C2348585
    UMLS CUI [1,2]
    C0449416
    UMLS CUI [1,3]
    C3847505

    Similar models

    Subject ID, consent group, and sources of subjects affected with prostate cancer and involved in the "Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression" project.

    Name
    Typ
    Description | Question | Decode (Coded Value)
    Datatyp
    Alias
    Item Group
    pht002530
    SUBJID
    Item
    Subject ID
    string
    C2348585 (UMLS CUI [1,1])
    Item
    Consent group as determined by DAC
    text
    C0021430 (UMLS CUI [1,1])
    Code List
    Consent group as determined by DAC
    CL Item
    Cancer Research and General Methods (CRGM) (1)
    SUBJ_SOURCE
    Item
    Source repository where subjects originate
    string
    C0449416 (UMLS CUI [1,1])
    C3847505 (UMLS CUI [1,2])
    SOURCE_SUBJID
    Item
    Subject ID in source repository
    string
    C2348585 (UMLS CUI [1,1])
    C0449416 (UMLS CUI [1,2])
    C3847505 (UMLS CUI [1,3])

    Do you need help on how to use the search function? Please watch the corresponding tutorial video for more details and learn how to use the search function most efficiently.

    Watch Tutorial