0 Évaluations

ID

34458

Description

Respiratory Load Magnitude Estimation in PD; ODM derived from: https://clinicaltrials.gov/show/NCT02202057

Lien

https://clinicaltrials.gov/show/NCT02202057

Mots-clés

  1. 17/01/2019 17/01/2019 -
  2. 27/03/2020 27/03/2020 - Sarah Riepenhausen
Détendeur de droits

see on clinicaltrials.gov

Téléchargé le

17 janvier 2019

DOI

Pour une demande vous connecter.

Licence

Creative Commons BY-NC 3.0

Modèle Commentaires :

Ici, vous pouvez faire des commentaires sur le modèle. À partir des bulles de texte, vous pouvez laisser des commentaires spécifiques sur les groupes Item et les Item.

Groupe Item commentaires pour :

Item commentaires pour :


    Aucun commentaire

    Vous devez être connecté pour pouvoir télécharger des formulaires. Veuillez vous connecter ou s’inscrire gratuitement.

    Eligibility Parkinson's Disease NCT02202057

    Eligibility Parkinson's Disease NCT02202057

    Inclusion Criteria
    Description

    Inclusion Criteria

    Alias
    UMLS CUI
    C1512693
    between the ages of 45 and 85
    Description

    ID.1

    Type de données

    boolean

    ability to provide informed consent
    Description

    ID.2

    Type de données

    boolean

    patient group: diagnosis of pd, hoehn and yahr stages ii - iv, by a uf movement disorders fellowship trained neurologist having completed a clinical assessment of each participant's pd severity and arriving at the diagnosis of pd by applying strict uf brain bank criteria.
    Description

    ID.3

    Type de données

    boolean

    healthy older adults: history of pd, or any other neurologic or neurodegenerative disease including stroke.
    Description

    ID.4

    Type de données

    boolean

    Exclusion Criteria
    Description

    Exclusion Criteria

    Alias
    UMLS CUI
    C0680251
    history of head and neck cancer, and radiation treatment to the head or neck
    Description

    ID.5

    Type de données

    boolean

    history of breathing disorders or diseases (e.g. chronic obstructive pulmonary disease (copd), asthma, lung cancer)
    Description

    ID.6

    Type de données

    boolean

    history of smoking in the past 5 years, or for more than 5 years at any one time
    Description

    ID.7

    Type de données

    boolean

    severe cognitive deficits including dementia.
    Description

    ID.8

    Type de données

    boolean

    difficulty complying with protocol due to severe neuropsychological disorder (i.e., severe depression: 31 or greater on the bdi)
    Description

    ID.9

    Type de données

    boolean

    Similar models

    Eligibility Parkinson's Disease NCT02202057

    Name
    Type
    Description | Question | Decode (Coded Value)
    Type de données
    Alias
    Item Group
    C1512693 (UMLS CUI)
    ID.1
    Item
    between the ages of 45 and 85
    boolean
    ID.2
    Item
    ability to provide informed consent
    boolean
    ID.3
    Item
    patient group: diagnosis of pd, hoehn and yahr stages ii - iv, by a uf movement disorders fellowship trained neurologist having completed a clinical assessment of each participant's pd severity and arriving at the diagnosis of pd by applying strict uf brain bank criteria.
    boolean
    ID.4
    Item
    healthy older adults: history of pd, or any other neurologic or neurodegenerative disease including stroke.
    boolean
    Item Group
    C0680251 (UMLS CUI)
    ID.5
    Item
    history of head and neck cancer, and radiation treatment to the head or neck
    boolean
    ID.6
    Item
    history of breathing disorders or diseases (e.g. chronic obstructive pulmonary disease (copd), asthma, lung cancer)
    boolean
    ID.7
    Item
    history of smoking in the past 5 years, or for more than 5 years at any one time
    boolean
    ID.8
    Item
    severe cognitive deficits including dementia.
    boolean
    ID.9
    Item
    difficulty complying with protocol due to severe neuropsychological disorder (i.e., severe depression: 31 or greater on the bdi)
    boolean

    Do you need help on how to use the search function? Please watch the corresponding tutorial video for more details and learn how to use the search function most efficiently.

    Watch Tutorial