SUBJID
Item
Subject ID
text
C2348585 (UMLS CUI [1,1])
Item
Race, ethnicity of participant
text
C5441552 (UMLS CUI [1,1])
Code List
Race, ethnicity of participant
CL Item
African American (AA)
Age
Item
Age at recruitment
text
C0001779 (UMLS CUI [1,1])
C0242800 (UMLS CUI [1,2])
Item
Gender of participant has been confirmed with genotyping: 1 = Male, 2 = Female
text
C0079399 (UMLS CUI [1,1])
Code List
Gender of participant has been confirmed with genotyping: 1 = Male, 2 = Female
CL Item
Male (1)
C0086582 (UMLS CUI [1,1])
CL Item
Female (2)
C0086287 (UMLS CUI [1,1])
BMI
Item
Body Mass Index
text
C1305855 (UMLS CUI [1,1])
Item
Consent form(s) signed by participant
text
C0009797 (UMLS CUI [1,1])
C0742766 (UMLS CUI [1,2])
Code List
Consent form(s) signed by participant
CL Item
BG91-0129 (A)
C0009797 (UMLS CUI [1,1])
CL Item
BG91-0129, Deceased participant (A,X)
C0009797 (UMLS CUI [1,1])
C1555024 (UMLS CUI [1,2])
CL Item
BG92-0090 (B)
C0009797 (UMLS CUI [1,1])
CL Item
BG92-0090, Deceased participant (B,X)
C0009797 (UMLS CUI [1,1])
C1555024 (UMLS CUI [1,2])
CL Item
BG95-109 (C)
C0009797 (UMLS CUI [1,1])
CL Item
BG00-028 (D)
C0009797 (UMLS CUI [1,1])
CL Item
BG00-427 (E)
C0009797 (UMLS CUI [1,1])
CL Item
BG00-427_001 (E_001)
C0009797 (UMLS CUI [1,1])
CL Item
BG00-427_001, Reconsent form (E_001, H)
C0009797 (UMLS CUI [1,1])
CL Item
BG00-427_001, Reconsent form (E_001,H)
C0009797 (UMLS CUI [1,1])
CL Item
BG00-427_001, Deceased participant (E_001,X)
C0009797 (UMLS CUI [1,1])
C1555024 (UMLS CUI [1,2])
CL Item
BG00-427_002 (E_002)
C0009797 (UMLS CUI [1,1])
CL Item
BG00-427_003; (E_003)
C0009797 (UMLS CUI [1,1])
CL Item
BG00-427_004 (E_004)
C0009797 (UMLS CUI [1,1])
CL Item
BG00-427_005 (E_005)
C0009797 (UMLS CUI [1,1])
CL Item
BG01-059 (F)
C0009797 (UMLS CUI [1,1])
CL Item
BG01-299 (G)
C0009797 (UMLS CUI [1,1])
CL Item
BG01-299-001 (G_001)
C0009797 (UMLS CUI [1,1])
CL Item
BG01-299-001, Deceased participant (G_001,X)
C0009797 (UMLS CUI [1,1])
C1555024 (UMLS CUI [1,2])
CL Item
BG01-299-002 (G_002)
C0009797 (UMLS CUI [1,1])
CL Item
BG01-299-002, Reconsent form (G_002, H)
C0009797 (UMLS CUI [1,1])
CL Item
Reconsent form (H)
C0009797 (UMLS CUI [1,1])
CL Item
Deceased participant (X)
C1555024 (UMLS CUI [1,1])
T2DM Age of Onset
Item
Age of T2DM (Type 2 Diabetes Mellitus) diagnosis
text
C1828181 (UMLS CUI [1,1])
C4014362 (UMLS CUI [1,2])
ESRD Age of Onset
Item
Age of ESRD (End Stage Renal Disease) diagnosis, start of dialysis
text
C1828181 (UMLS CUI [1,1])
C0022661 (UMLS CUI [1,2])
C0011946 (UMLS CUI [1,3])
C0439659 (UMLS CUI [1,4])
HTN Age of Onset
Item
Age of hypertension diagnosis
text
C1828181 (UMLS CUI [1,1])
C0020538 (UMLS CUI [1,2])
Duration T2DM
Item
Duration of T2DM (Type 2 Diabetes Mellitus) since diagnosis
text
C0872031 (UMLS CUI [1,1])
C4014362 (UMLS CUI [1,2])
Item
Individual has reported that he/she is on dialysis
text
C0681906 (UMLS CUI [1,1])
C0011946 (UMLS CUI [1,2])
Code List
Individual has reported that he/she is on dialysis
CL Item
Yes (ESRD)
C1705108 (UMLS CUI [1,1])
CL Item
No (no)
C1298908 (UMLS CUI [1,1])
CL Item
Yes (yes)
C1705108 (UMLS CUI [1,1])
Item
Individual has self reported hypertension (yes, no, unknown)
text
C0681906 (UMLS CUI [1,1])
C0020538 (UMLS CUI [1,2])
Code List
Individual has self reported hypertension (yes, no, unknown)
CL Item
Yes (HTN)
C1705108 (UMLS CUI [1,1])
CL Item
No (no)
C1298908 (UMLS CUI [1,1])
CL Item
Unknown (unknown)
C0439673 (UMLS CUI [1,1])
CL Item
Yes (yes)
C1705108 (UMLS CUI [1,1])
Retinopathy
Item
Individual has diabetic retinopathy reported by ophthalmologist or laser treatment with photocoagulation
text
C0011884 (UMLS CUI [1,1])
C1704292 (UMLS CUI [1,2])
C0700287 (UMLS CUI [1,3])
C0011884 (UMLS CUI [2,1])
C0441510 (UMLS CUI [2,2])
Item
Hemoglobin1AC, test
text
C0850989 (UMLS CUI [1,1])
Code List
Hemoglobin1AC, test
pc1
Item
Principal component 1: a mathematical tool commonly used in statistical analysis. It seeks to identify an orthogonal coordinate system that transforms a number of possibly correlated variables into a smaller number of uncorrelated variables called principal components (PC). This method allows for the separation of individuals on the basis of differences in their properties and can also be used to evaluate the properties that contribute the most to these separations. The principal components are ordered in terms of the amount of variation in the dataset that they explain such that the first PC explains the largest fraction of the total variance, and so on. There exist a number of methods to determine the number of PC to be retained for a specific analysis. However, none of them uniformly dominates the others. Following a practice largely adopted in the field, we present the first 10 PC computed on this dataset.
text
C1882460 (UMLS CUI [1,1])
C0489829 (UMLS CUI [1,2])
C0871424 (UMLS CUI [1,3])
C1707511 (UMLS CUI [1,4])
C1707520 (UMLS CUI [1,5])
C0871342 (UMLS CUI [2,1])
C0871161 (UMLS CUI [2,2])
C1705241 (UMLS CUI [2,3])
C0220825 (UMLS CUI [2,4])
C0237589 (UMLS CUI [2,5])
C1882460 (UMLS CUI [3,1])
C1947906 (UMLS CUI [3,2])
C1265611 (UMLS CUI [3,3])
C2348152 (UMLS CUI [3,4])
C4553182 (UMLS CUI [3,5])
C0443228 (UMLS CUI [3,6])
C1264664 (UMLS CUI [3,7])
C0025663 (UMLS CUI [4,1])
C1148554 (UMLS CUI [4,2])
C0449961 (UMLS CUI [4,3])
C0936012 (UMLS CUI [4,4])
C1518422 (UMLS CUI [4,5])
C0205375 (UMLS CUI [4,6])
C0870442 (UMLS CUI [4,7])
pc2
Item
Principal component 2: a mathematical tool commonly used in statistical analysis. It seeks to identify an orthogonal coordinate system that transforms a number of possibly correlated variables into a smaller number of uncorrelated variables called principal components (PC). This method allows for the separation of individuals on the basis of differences in their properties and can also be used to evaluate the properties that contribute the most to these separations. The principal components are ordered in terms of the amount of variation in the dataset that they explain such that the first PC explains the largest fraction of the total variance, and so on. There exist a number of methods to determine the number of PC to be retained for a specific analysis. However, none of them uniformly dominates the others. Following a practice largely adopted in the field, we present the first 10 PC computed on this dataset.
text
C1882460 (UMLS CUI [1,1])
C0489829 (UMLS CUI [1,2])
C0871424 (UMLS CUI [1,3])
C1707511 (UMLS CUI [1,4])
C1707520 (UMLS CUI [1,5])
C0871342 (UMLS CUI [2,1])
C0871161 (UMLS CUI [2,2])
C1705241 (UMLS CUI [2,3])
C0220825 (UMLS CUI [2,4])
C0237589 (UMLS CUI [2,5])
C1882460 (UMLS CUI [3,1])
C1947906 (UMLS CUI [3,2])
C1265611 (UMLS CUI [3,3])
C2348152 (UMLS CUI [3,4])
C4553182 (UMLS CUI [3,5])
C0443228 (UMLS CUI [3,6])
C1264664 (UMLS CUI [3,7])
C0025663 (UMLS CUI [4,1])
C1148554 (UMLS CUI [4,2])
C0449961 (UMLS CUI [4,3])
C0936012 (UMLS CUI [4,4])
C1518422 (UMLS CUI [4,5])
C0205375 (UMLS CUI [4,6])
C0870442 (UMLS CUI [4,7])
pc3
Item
Principal component 3: a mathematical tool commonly used in statistical analysis. It seeks to identify an orthogonal coordinate system that transforms a number of possibly correlated variables into a smaller number of uncorrelated variables called principal components (PC). This method allows for the separation of individuals on the basis of differences in their properties and can also be used to evaluate the properties that contribute the most to these separations. The principal components are ordered in terms of the amount of variation in the dataset that they explain such that the first PC explains the largest fraction of the total variance, and so on. There exist a number of methods to determine the number of PC to be retained for a specific analysis. However, none of them uniformly dominates the others. Following a practice largely adopted in the field, we present the first 10 PC computed on this dataset.
text
C1882460 (UMLS CUI [1,1])
C0489829 (UMLS CUI [1,2])
C0871424 (UMLS CUI [1,3])
C1707511 (UMLS CUI [1,4])
C1707520 (UMLS CUI [1,5])
C0871342 (UMLS CUI [2,1])
C0871161 (UMLS CUI [2,2])
C1705241 (UMLS CUI [2,3])
C0220825 (UMLS CUI [2,4])
C0237589 (UMLS CUI [2,5])
C1882460 (UMLS CUI [3,1])
C1947906 (UMLS CUI [3,2])
C1265611 (UMLS CUI [3,3])
C2348152 (UMLS CUI [3,4])
C4553182 (UMLS CUI [3,5])
C0443228 (UMLS CUI [3,6])
C1264664 (UMLS CUI [3,7])
C0025663 (UMLS CUI [4,1])
C1148554 (UMLS CUI [4,2])
C0449961 (UMLS CUI [4,3])
C0936012 (UMLS CUI [4,4])
C1518422 (UMLS CUI [4,5])
C0205375 (UMLS CUI [4,6])
C0870442 (UMLS CUI [4,7])
pc4
Item
Principal component 4: a mathematical tool commonly used in statistical analysis. It seeks to identify an orthogonal coordinate system that transforms a number of possibly correlated variables into a smaller number of uncorrelated variables called principal components (PC). This method allows for the separation of individuals on the basis of differences in their properties and can also be used to evaluate the properties that contribute the most to these separations. The principal components are ordered in terms of the amount of variation in the dataset that they explain such that the first PC explains the largest fraction of the total variance, and so on. There exist a number of methods to determine the number of PC to be retained for a specific analysis. However, none of them uniformly dominates the others. Following a practice largely adopted in the field, we present the first 10 PC computed on this dataset.
text
C1882460 (UMLS CUI [1,1])
C0489829 (UMLS CUI [1,2])
C0871424 (UMLS CUI [1,3])
C1707511 (UMLS CUI [1,4])
C1707520 (UMLS CUI [1,5])
C0871342 (UMLS CUI [2,1])
C0871161 (UMLS CUI [2,2])
C1705241 (UMLS CUI [2,3])
C0220825 (UMLS CUI [2,4])
C0237589 (UMLS CUI [2,5])
C1882460 (UMLS CUI [3,1])
C1947906 (UMLS CUI [3,2])
C1265611 (UMLS CUI [3,3])
C2348152 (UMLS CUI [3,4])
C4553182 (UMLS CUI [3,5])
C0443228 (UMLS CUI [3,6])
C1264664 (UMLS CUI [3,7])
C0025663 (UMLS CUI [4,1])
C1148554 (UMLS CUI [4,2])
C0449961 (UMLS CUI [4,3])
C0936012 (UMLS CUI [4,4])
C1518422 (UMLS CUI [4,5])
C0205375 (UMLS CUI [4,6])
C0870442 (UMLS CUI [4,7])
pc5
Item
Principal component 5: a mathematical tool commonly used in statistical analysis. It seeks to identify an orthogonal coordinate system that transforms a number of possibly correlated variables into a smaller number of uncorrelated variables called principal components (PC). This method allows for the separation of individuals on the basis of differences in their properties and can also be used to evaluate the properties that contribute the most to these separations. The principal components are ordered in terms of the amount of variation in the dataset that they explain such that the first PC explains the largest fraction of the total variance, and so on. There exist a number of methods to determine the number of PC to be retained for a specific analysis. However, none of them uniformly dominates the others. Following a practice largely adopted in the field, we present the first 10 PC computed on this dataset.
text
C1882460 (UMLS CUI [1,1])
C0489829 (UMLS CUI [1,2])
C0871424 (UMLS CUI [1,3])
C1707511 (UMLS CUI [1,4])
C1707520 (UMLS CUI [1,5])
C0871342 (UMLS CUI [2,1])
C0871161 (UMLS CUI [2,2])
C1705241 (UMLS CUI [2,3])
C0220825 (UMLS CUI [2,4])
C0237589 (UMLS CUI [2,5])
C1882460 (UMLS CUI [3,1])
C1947906 (UMLS CUI [3,2])
C1265611 (UMLS CUI [3,3])
C2348152 (UMLS CUI [3,4])
C4553182 (UMLS CUI [3,5])
C0443228 (UMLS CUI [3,6])
C1264664 (UMLS CUI [3,7])
C0025663 (UMLS CUI [4,1])
C1148554 (UMLS CUI [4,2])
C0449961 (UMLS CUI [4,3])
C0936012 (UMLS CUI [4,4])
C1518422 (UMLS CUI [4,5])
C0205375 (UMLS CUI [4,6])
C0870442 (UMLS CUI [4,7])
pc6
Item
Principal component 6: a mathematical tool commonly used in statistical analysis. It seeks to identify an orthogonal coordinate system that transforms a number of possibly correlated variables into a smaller number of uncorrelated variables called principal components (PC). This method allows for the separation of individuals on the basis of differences in their properties and can also be used to evaluate the properties that contribute the most to these separations. The principal components are ordered in terms of the amount of variation in the dataset that they explain such that the first PC explains the largest fraction of the total variance, and so on. There exist a number of methods to determine the number of PC to be retained for a specific analysis. However, none of them uniformly dominates the others. Following a practice largely adopted in the field, we present the first 10 PC computed on this dataset.
text
C1882460 (UMLS CUI [1,1])
C0489829 (UMLS CUI [1,2])
C0871424 (UMLS CUI [1,3])
C1707511 (UMLS CUI [1,4])
C1707520 (UMLS CUI [1,5])
C0871342 (UMLS CUI [2,1])
C0871161 (UMLS CUI [2,2])
C1705241 (UMLS CUI [2,3])
C0220825 (UMLS CUI [2,4])
C0237589 (UMLS CUI [2,5])
C1882460 (UMLS CUI [3,1])
C1947906 (UMLS CUI [3,2])
C1265611 (UMLS CUI [3,3])
C2348152 (UMLS CUI [3,4])
C4553182 (UMLS CUI [3,5])
C0443228 (UMLS CUI [3,6])
C1264664 (UMLS CUI [3,7])
C0025663 (UMLS CUI [4,1])
C1148554 (UMLS CUI [4,2])
C0449961 (UMLS CUI [4,3])
C0936012 (UMLS CUI [4,4])
C1518422 (UMLS CUI [4,5])
C0205375 (UMLS CUI [4,6])
C0870442 (UMLS CUI [4,7])
pc7
Item
Principal component 7: a mathematical tool commonly used in statistical analysis. It seeks to identify an orthogonal coordinate system that transforms a number of possibly correlated variables into a smaller number of uncorrelated variables called principal components (PC). This method allows for the separation of individuals on the basis of differences in their properties and can also be used to evaluate the properties that contribute the most to these separations. The principal components are ordered in terms of the amount of variation in the dataset that they explain such that the first PC explains the largest fraction of the total variance, and so on. There exist a number of methods to determine the number of PC to be retained for a specific analysis. However, none of them uniformly dominates the others. Following a practice largely adopted in the field, we present the first 10 PC computed on this dataset.
text
C1882460 (UMLS CUI [1,1])
C0489829 (UMLS CUI [1,2])
C0871424 (UMLS CUI [1,3])
C1707511 (UMLS CUI [1,4])
C1707520 (UMLS CUI [1,5])
C0871342 (UMLS CUI [2,1])
C0871161 (UMLS CUI [2,2])
C1705241 (UMLS CUI [2,3])
C0220825 (UMLS CUI [2,4])
C0237589 (UMLS CUI [2,5])
C1882460 (UMLS CUI [3,1])
C1947906 (UMLS CUI [3,2])
C1265611 (UMLS CUI [3,3])
C2348152 (UMLS CUI [3,4])
C4553182 (UMLS CUI [3,5])
C0443228 (UMLS CUI [3,6])
C1264664 (UMLS CUI [3,7])
C0025663 (UMLS CUI [4,1])
C1148554 (UMLS CUI [4,2])
C0449961 (UMLS CUI [4,3])
C0936012 (UMLS CUI [4,4])
C1518422 (UMLS CUI [4,5])
C0205375 (UMLS CUI [4,6])
C0870442 (UMLS CUI [4,7])
pc8
Item
Principal component 8: a mathematical tool commonly used in statistical analysis. It seeks to identify an orthogonal coordinate system that transforms a number of possibly correlated variables into a smaller number of uncorrelated variables called principal components (PC). This method allows for the separation of individuals on the basis of differences in their properties and can also be used to evaluate the properties that contribute the most to these separations. The principal components are ordered in terms of the amount of variation in the dataset that they explain such that the first PC explains the largest fraction of the total variance, and so on. There exist a number of methods to determine the number of PC to be retained for a specific analysis. However, none of them uniformly dominates the others. Following a practice largely adopted in the field, we present the first 10 PC computed on this dataset.
text
C1882460 (UMLS CUI [1,1])
C0489829 (UMLS CUI [1,2])
C0871424 (UMLS CUI [1,3])
C1707511 (UMLS CUI [1,4])
C1707520 (UMLS CUI [1,5])
C0871342 (UMLS CUI [2,1])
C0871161 (UMLS CUI [2,2])
C1705241 (UMLS CUI [2,3])
C0220825 (UMLS CUI [2,4])
C0237589 (UMLS CUI [2,5])
C1882460 (UMLS CUI [3,1])
C1947906 (UMLS CUI [3,2])
C1265611 (UMLS CUI [3,3])
C2348152 (UMLS CUI [3,4])
C4553182 (UMLS CUI [3,5])
C0443228 (UMLS CUI [3,6])
C1264664 (UMLS CUI [3,7])
C0025663 (UMLS CUI [4,1])
C1148554 (UMLS CUI [4,2])
C0449961 (UMLS CUI [4,3])
C0936012 (UMLS CUI [4,4])
C1518422 (UMLS CUI [4,5])
C0205375 (UMLS CUI [4,6])
C0870442 (UMLS CUI [4,7])
pc9
Item
Principal component 9: a mathematical tool commonly used in statistical analysis. It seeks to identify an orthogonal coordinate system that transforms a number of possibly correlated variables into a smaller number of uncorrelated variables called principal components (PC). This method allows for the separation of individuals on the basis of differences in their properties and can also be used to evaluate the properties that contribute the most to these separations. The principal components are ordered in terms of the amount of variation in the dataset that they explain such that the first PC explains the largest fraction of the total variance, and so on. There exist a number of methods to determine the number of PC to be retained for a specific analysis. However, none of them uniformly dominates the others. Following a practice largely adopted in the field, we present the first 10 PC computed on this dataset.
text
C1882460 (UMLS CUI [1,1])
C0489829 (UMLS CUI [1,2])
C0871424 (UMLS CUI [1,3])
C1707511 (UMLS CUI [1,4])
C1707520 (UMLS CUI [1,5])
C0871342 (UMLS CUI [2,1])
C0871161 (UMLS CUI [2,2])
C1705241 (UMLS CUI [2,3])
C0220825 (UMLS CUI [2,4])
C0237589 (UMLS CUI [2,5])
C1882460 (UMLS CUI [3,1])
C1947906 (UMLS CUI [3,2])
C1265611 (UMLS CUI [3,3])
C2348152 (UMLS CUI [3,4])
C4553182 (UMLS CUI [3,5])
C0443228 (UMLS CUI [3,6])
C1264664 (UMLS CUI [3,7])
C0025663 (UMLS CUI [4,1])
C1148554 (UMLS CUI [4,2])
C0449961 (UMLS CUI [4,3])
C0936012 (UMLS CUI [4,4])
C1518422 (UMLS CUI [4,5])
C0205375 (UMLS CUI [4,6])
C0870442 (UMLS CUI [4,7])
pc10
Item
Principal component 10: a mathematical tool commonly used in statistical analysis. It seeks to identify an orthogonal coordinate system that transforms a number of possibly correlated variables into a smaller number of uncorrelated variables called principal components (PC). This method allows for the separation of individuals on the basis of differences in their properties and can also be used to evaluate the properties that contribute the most to these separations. The principal components are ordered in terms of the amount of variation in the dataset that they explain such that the first PC explains the largest fraction of the total variance, and so on. There exist a number of methods to determine the number of PC to be retained for a specific analysis. However, none of them uniformly dominates the others. Following a practice largely adopted in the field, we present the first 10 PC computed on this dataset.
text
C1882460 (UMLS CUI [1,1])
C0489829 (UMLS CUI [1,2])
C0871424 (UMLS CUI [1,3])
C1707511 (UMLS CUI [1,4])
C1707520 (UMLS CUI [1,5])
C0871342 (UMLS CUI [2,1])
C0871161 (UMLS CUI [2,2])
C1705241 (UMLS CUI [2,3])
C0220825 (UMLS CUI [2,4])
C0237589 (UMLS CUI [2,5])
C1882460 (UMLS CUI [3,1])
C1947906 (UMLS CUI [3,2])
C1265611 (UMLS CUI [3,3])
C2348152 (UMLS CUI [3,4])
C4553182 (UMLS CUI [3,5])
C0443228 (UMLS CUI [3,6])
C1264664 (UMLS CUI [3,7])
C0025663 (UMLS CUI [4,1])
C1148554 (UMLS CUI [4,2])
C0449961 (UMLS CUI [4,3])
C0936012 (UMLS CUI [4,4])
C1518422 (UMLS CUI [4,5])
C0205375 (UMLS CUI [4,6])
C0870442 (UMLS CUI [4,7])