SUBJID
Item
Subject ID
text
C2348585 (UMLS CUI [1,1])
Item
Race, ethnicity of participant
text
C5441552 (UMLS CUI [1,1])
Code List
Race, ethnicity of participant
CL Item
African American (AA)
Age
Item
Age at recruitment
text
C0001779 (UMLS CUI [1,1])
C0242800 (UMLS CUI [1,2])
Item
Gender of participant has been confirmed with genotyping: 1 = Male, 2 = Female
text
C0079399 (UMLS CUI [1,1])
C1285573 (UMLS CUI [1,2])
Code List
Gender of participant has been confirmed with genotyping: 1 = Male, 2 = Female
CL Item
Male (1)
C0086582 (UMLS CUI [1,1])
CL Item
Female (2)
C0086287 (UMLS CUI [1,1])
BMI
Item
Body Mass Index
text
C1305855 (UMLS CUI [1,1])
FBS
Item
Fasting Blood Sugar
text
C0202045 (UMLS CUI [1,1])
Item
Consent form(s) signed by participant
text
C0009797 (UMLS CUI [1,1])
C0742766 (UMLS CUI [1,2])
Code List
Consent form(s) signed by participant
CL Item
BG91-0129 (A)
C0009797 (UMLS CUI [1,1])
CL Item
BG92-0090 (B)
C0009797 (UMLS CUI [1,1])
CL Item
BG95-109 (C)
C0009797 (UMLS CUI [1,1])
CL Item
BG00-028 (D)
C0009797 (UMLS CUI [1,1])
CL Item
BG00-427 (E)
C0009797 (UMLS CUI [1,1])
CL Item
BG00-427, Reconsent form (E,H)
C0009797 (UMLS CUI [1,1])
CL Item
BG00-427, Deceased participant (E,X)
C0009797 (UMLS CUI [1,1])
C1555024 (UMLS CUI [1,2])
CL Item
BG00-427_002, Reconsent form (E-002,H)
C0009797 (UMLS CUI [1,1])
CL Item
BG00-427_004 (E-004)
C0009797 (UMLS CUI [1,1])
CL Item
BG00-427_001 (E_001)
C0009797 (UMLS CUI [1,1])
CL Item
BG00-427_002 (E_002)
C0009797 (UMLS CUI [1,1])
CL Item
BG00-427_002, Reconsent form (E_002,H)
C0009797 (UMLS CUI [1,1])
CL Item
BG00-427_003 (E_003)
C0009797 (UMLS CUI [1,1])
CL Item
BG00-427_004 (E_004)
C0009797 (UMLS CUI [1,1])
CL Item
BG00-427_005 (E_005)
C0009797 (UMLS CUI [1,1])
CL Item
BG01-059 (F)
C0009797 (UMLS CUI [1,1])
CL Item
BG01-299 (G)
C0009797 (UMLS CUI [1,1])
CL Item
BG01-299-001 (G_001)
C0009797 (UMLS CUI [1,1])
CL Item
BG01-299-002 (G_002)
C0009797 (UMLS CUI [1,1])
CL Item
Reconsent form (H)
C0009797 (UMLS CUI [1,1])
CL Item
Deceased participant (X)
C1555024 (UMLS CUI [1,1])
Item
Participant is fasting when he has not had anything to eat or drink 12 hours prior to blood draw.
text
C4554048 (UMLS CUI [1,1])
C0015663 (UMLS CUI [1,2])
C4263302 (UMLS CUI [1,3])
C3173371 (UMLS CUI [1,4])
C1518422 (UMLS CUI [1,5])
C0332168 (UMLS CUI [1,6])
C0332152 (UMLS CUI [1,7])
C0005834 (UMLS CUI [1,8])
Code List
Participant is fasting when he has not had anything to eat or drink 12 hours prior to blood draw.
CL Item
Unknown (.)
C0439673 (UMLS CUI [1,1])
CL Item
Fasting (fasting)
C0015663 (UMLS CUI [1,1])
CL Item
Not fasting (not fasting)
C0015663 (UMLS CUI [1,1])
C1272696 (UMLS CUI [1,2])
pc1
Item
Principal component 1: a mathematical tool commonly used in statistical analysis. It seeks to identify an orthogonal coordinate system that transforms a number of possibly correlated variables into a smaller number of uncorrelated variables called principal components (PC). This method allows for the separation of individuals on the basis of differences in their properties and can also be used to evaluate the properties that contribute the most to these separations. The principal components are ordered in terms of the amount of variation in the dataset that they explain such that the first PC explains the largest fraction of the total variance, and so on. There exist a number of methods to determine the number of PC to be retained for a specific analysis. However, none of them uniformly dominates the others. Following a practice largely adopted in the field, we present the first 10 PC computed on this dataset.
text
C1882460 (UMLS CUI [1,1])
C0489829 (UMLS CUI [1,2])
C0871424 (UMLS CUI [1,3])
C1707511 (UMLS CUI [1,4])
C1707520 (UMLS CUI [1,5])
C0871342 (UMLS CUI [2,1])
C0871161 (UMLS CUI [2,2])
C1705241 (UMLS CUI [2,3])
C0220825 (UMLS CUI [2,4])
C0237589 (UMLS CUI [2,5])
C1882460 (UMLS CUI [3,1])
C1947906 (UMLS CUI [3,2])
C1265611 (UMLS CUI [3,3])
C2348152 (UMLS CUI [3,4])
C4553182 (UMLS CUI [3,5])
C0443228 (UMLS CUI [3,6])
C1264664 (UMLS CUI [3,7])
C0025663 (UMLS CUI [4,1])
C1148554 (UMLS CUI [4,2])
C0449961 (UMLS CUI [4,3])
C0936012 (UMLS CUI [4,4])
C1518422 (UMLS CUI [4,5])
C0205375 (UMLS CUI [4,6])
C0870442 (UMLS CUI [4,7])
pc2
Item
Principal component 2: a mathematical tool commonly used in statistical analysis. It seeks to identify an orthogonal coordinate system that transforms a number of possibly correlated variables into a smaller number of uncorrelated variables called principal components (PC). This method allows for the separation of individuals on the basis of differences in their properties and can also be used to evaluate the properties that contribute the most to these separations. The principal components are ordered in terms of the amount of variation in the dataset that they explain such that the first PC explains the largest fraction of the total variance, and so on. There exist a number of methods to determine the number of PC to be retained for a specific analysis. However, none of them uniformly dominates the others. Following a practice largely adopted in the field, we present the first 10 PC computed on this dataset.
text
C1882460 (UMLS CUI [1,1])
C0489829 (UMLS CUI [1,2])
C0871424 (UMLS CUI [1,3])
C1707511 (UMLS CUI [1,4])
C1707520 (UMLS CUI [1,5])
C0871342 (UMLS CUI [2,1])
C0871161 (UMLS CUI [2,2])
C1705241 (UMLS CUI [2,3])
C0220825 (UMLS CUI [2,4])
C0237589 (UMLS CUI [2,5])
C1882460 (UMLS CUI [3,1])
C1947906 (UMLS CUI [3,2])
C1265611 (UMLS CUI [3,3])
C2348152 (UMLS CUI [3,4])
C4553182 (UMLS CUI [3,5])
C0443228 (UMLS CUI [3,6])
C1264664 (UMLS CUI [3,7])
C0025663 (UMLS CUI [4,1])
C1148554 (UMLS CUI [4,2])
C0449961 (UMLS CUI [4,3])
C0936012 (UMLS CUI [4,4])
C1518422 (UMLS CUI [4,5])
C0205375 (UMLS CUI [4,6])
C0870442 (UMLS CUI [4,7])
pc3
Item
Principal component 3: a mathematical tool commonly used in statistical analysis. It seeks to identify an orthogonal coordinate system that transforms a number of possibly correlated variables into a smaller number of uncorrelated variables called principal components (PC). This method allows for the separation of individuals on the basis of differences in their properties and can also be used to evaluate the properties that contribute the most to these separations. The principal components are ordered in terms of the amount of variation in the dataset that they explain such that the first PC explains the largest fraction of the total variance, and so on. There exist a number of methods to determine the number of PC to be retained for a specific analysis. However, none of them uniformly dominates the others. Following a practice largely adopted in the field, we present the first 10 PC computed on this dataset.
text
C1882460 (UMLS CUI [1,1])
C0489829 (UMLS CUI [1,2])
C0871424 (UMLS CUI [1,3])
C1707511 (UMLS CUI [1,4])
C1707520 (UMLS CUI [1,5])
C0871342 (UMLS CUI [2,1])
C0871161 (UMLS CUI [2,2])
C1705241 (UMLS CUI [2,3])
C0220825 (UMLS CUI [2,4])
C0237589 (UMLS CUI [2,5])
C1882460 (UMLS CUI [3,1])
C1947906 (UMLS CUI [3,2])
C1265611 (UMLS CUI [3,3])
C2348152 (UMLS CUI [3,4])
C4553182 (UMLS CUI [3,5])
C0443228 (UMLS CUI [3,6])
C1264664 (UMLS CUI [3,7])
C0025663 (UMLS CUI [4,1])
C1148554 (UMLS CUI [4,2])
C0449961 (UMLS CUI [4,3])
C0936012 (UMLS CUI [4,4])
C1518422 (UMLS CUI [4,5])
C0205375 (UMLS CUI [4,6])
C0870442 (UMLS CUI [4,7])
pc4
Item
Principal component 4: a mathematical tool commonly used in statistical analysis. It seeks to identify an orthogonal coordinate system that transforms a number of possibly correlated variables into a smaller number of uncorrelated variables called principal components (PC). This method allows for the separation of individuals on the basis of differences in their properties and can also be used to evaluate the properties that contribute the most to these separations. The principal components are ordered in terms of the amount of variation in the dataset that they explain such that the first PC explains the largest fraction of the total variance, and so on. There exist a number of methods to determine the number of PC to be retained for a specific analysis. However, none of them uniformly dominates the others. Following a practice largely adopted in the field, we present the first 10 PC computed on this dataset.
text
C1882460 (UMLS CUI [1,1])
C0489829 (UMLS CUI [1,2])
C0871424 (UMLS CUI [1,3])
C1707511 (UMLS CUI [1,4])
C1707520 (UMLS CUI [1,5])
C0871342 (UMLS CUI [2,1])
C0871161 (UMLS CUI [2,2])
C1705241 (UMLS CUI [2,3])
C0220825 (UMLS CUI [2,4])
C0237589 (UMLS CUI [2,5])
C1882460 (UMLS CUI [3,1])
C1947906 (UMLS CUI [3,2])
C1265611 (UMLS CUI [3,3])
C2348152 (UMLS CUI [3,4])
C4553182 (UMLS CUI [3,5])
C0443228 (UMLS CUI [3,6])
C1264664 (UMLS CUI [3,7])
C0025663 (UMLS CUI [4,1])
C1148554 (UMLS CUI [4,2])
C0449961 (UMLS CUI [4,3])
C0936012 (UMLS CUI [4,4])
C1518422 (UMLS CUI [4,5])
C0205375 (UMLS CUI [4,6])
C0870442 (UMLS CUI [4,7])
pc5
Item
Principal component 5: a mathematical tool commonly used in statistical analysis. It seeks to identify an orthogonal coordinate system that transforms a number of possibly correlated variables into a smaller number of uncorrelated variables called principal components (PC). This method allows for the separation of individuals on the basis of differences in their properties and can also be used to evaluate the properties that contribute the most to these separations. The principal components are ordered in terms of the amount of variation in the dataset that they explain such that the first PC explains the largest fraction of the total variance, and so on. There exist a number of methods to determine the number of PC to be retained for a specific analysis. However, none of them uniformly dominates the others. Following a practice largely adopted in the field, we present the first 10 PC computed on this dataset.
text
C1882460 (UMLS CUI [1,1])
C0489829 (UMLS CUI [1,2])
C0871424 (UMLS CUI [1,3])
C1707511 (UMLS CUI [1,4])
C1707520 (UMLS CUI [1,5])
C0871342 (UMLS CUI [2,1])
C0871161 (UMLS CUI [2,2])
C1705241 (UMLS CUI [2,3])
C0220825 (UMLS CUI [2,4])
C0237589 (UMLS CUI [2,5])
C1882460 (UMLS CUI [3,1])
C1947906 (UMLS CUI [3,2])
C1265611 (UMLS CUI [3,3])
C2348152 (UMLS CUI [3,4])
C4553182 (UMLS CUI [3,5])
C0443228 (UMLS CUI [3,6])
C1264664 (UMLS CUI [3,7])
C0025663 (UMLS CUI [4,1])
C1148554 (UMLS CUI [4,2])
C0449961 (UMLS CUI [4,3])
C0936012 (UMLS CUI [4,4])
C1518422 (UMLS CUI [4,5])
C0205375 (UMLS CUI [4,6])
C0870442 (UMLS CUI [4,7])
pc6
Item
Principal component 6: a mathematical tool commonly used in statistical analysis. It seeks to identify an orthogonal coordinate system that transforms a number of possibly correlated variables into a smaller number of uncorrelated variables called principal components (PC). This method allows for the separation of individuals on the basis of differences in their properties and can also be used to evaluate the properties that contribute the most to these separations. The principal components are ordered in terms of the amount of variation in the dataset that they explain such that the first PC explains the largest fraction of the total variance, and so on. There exist a number of methods to determine the number of PC to be retained for a specific analysis. However, none of them uniformly dominates the others. Following a practice largely adopted in the field, we present the first 10 PC computed on this dataset.
text
C1882460 (UMLS CUI [1,1])
C0489829 (UMLS CUI [1,2])
C0871424 (UMLS CUI [1,3])
C1707511 (UMLS CUI [1,4])
C1707520 (UMLS CUI [1,5])
C0871342 (UMLS CUI [2,1])
C0871161 (UMLS CUI [2,2])
C1705241 (UMLS CUI [2,3])
C0220825 (UMLS CUI [2,4])
C0237589 (UMLS CUI [2,5])
C1882460 (UMLS CUI [3,1])
C1947906 (UMLS CUI [3,2])
C1265611 (UMLS CUI [3,3])
C2348152 (UMLS CUI [3,4])
C4553182 (UMLS CUI [3,5])
C0443228 (UMLS CUI [3,6])
C1264664 (UMLS CUI [3,7])
C0025663 (UMLS CUI [4,1])
C1148554 (UMLS CUI [4,2])
C0449961 (UMLS CUI [4,3])
C0936012 (UMLS CUI [4,4])
C1518422 (UMLS CUI [4,5])
C0205375 (UMLS CUI [4,6])
C0870442 (UMLS CUI [4,7])
pc7
Item
Principal component 7: a mathematical tool commonly used in statistical analysis. It seeks to identify an orthogonal coordinate system that transforms a number of possibly correlated variables into a smaller number of uncorrelated variables called principal components (PC). This method allows for the separation of individuals on the basis of differences in their properties and can also be used to evaluate the properties that contribute the most to these separations. The principal components are ordered in terms of the amount of variation in the dataset that they explain such that the first PC explains the largest fraction of the total variance, and so on. There exist a number of methods to determine the number of PC to be retained for a specific analysis. However, none of them uniformly dominates the others. Following a practice largely adopted in the field, we present the first 10 PC computed on this dataset.
text
C1882460 (UMLS CUI [1,1])
C0489829 (UMLS CUI [1,2])
C0871424 (UMLS CUI [1,3])
C1707511 (UMLS CUI [1,4])
C1707520 (UMLS CUI [1,5])
C0871342 (UMLS CUI [2,1])
C0871161 (UMLS CUI [2,2])
C1705241 (UMLS CUI [2,3])
C0220825 (UMLS CUI [2,4])
C0237589 (UMLS CUI [2,5])
C1882460 (UMLS CUI [3,1])
C1947906 (UMLS CUI [3,2])
C1265611 (UMLS CUI [3,3])
C2348152 (UMLS CUI [3,4])
C4553182 (UMLS CUI [3,5])
C0443228 (UMLS CUI [3,6])
C1264664 (UMLS CUI [3,7])
C0025663 (UMLS CUI [4,1])
C1148554 (UMLS CUI [4,2])
C0449961 (UMLS CUI [4,3])
C0936012 (UMLS CUI [4,4])
C1518422 (UMLS CUI [4,5])
C0205375 (UMLS CUI [4,6])
C0870442 (UMLS CUI [4,7])
pc8
Item
Principal component 8: a mathematical tool commonly used in statistical analysis. It seeks to identify an orthogonal coordinate system that transforms a number of possibly correlated variables into a smaller number of uncorrelated variables called principal components (PC). This method allows for the separation of individuals on the basis of differences in their properties and can also be used to evaluate the properties that contribute the most to these separations. The principal components are ordered in terms of the amount of variation in the dataset that they explain such that the first PC explains the largest fraction of the total variance, and so on. There exist a number of methods to determine the number of PC to be retained for a specific analysis. However, none of them uniformly dominates the others. Following a practice largely adopted in the field, we present the first 10 PC computed on this dataset.
text
C1882460 (UMLS CUI [1,1])
C0489829 (UMLS CUI [1,2])
C0871424 (UMLS CUI [1,3])
C1707511 (UMLS CUI [1,4])
C1707520 (UMLS CUI [1,5])
C0871342 (UMLS CUI [2,1])
C0871161 (UMLS CUI [2,2])
C1705241 (UMLS CUI [2,3])
C0220825 (UMLS CUI [2,4])
C0237589 (UMLS CUI [2,5])
C1882460 (UMLS CUI [3,1])
C1947906 (UMLS CUI [3,2])
C1265611 (UMLS CUI [3,3])
C2348152 (UMLS CUI [3,4])
C4553182 (UMLS CUI [3,5])
C0443228 (UMLS CUI [3,6])
C1264664 (UMLS CUI [3,7])
C0025663 (UMLS CUI [4,1])
C1148554 (UMLS CUI [4,2])
C0449961 (UMLS CUI [4,3])
C0936012 (UMLS CUI [4,4])
C1518422 (UMLS CUI [4,5])
C0205375 (UMLS CUI [4,6])
C0870442 (UMLS CUI [4,7])
pc9
Item
Principal component 9: a mathematical tool commonly used in statistical analysis. It seeks to identify an orthogonal coordinate system that transforms a number of possibly correlated variables into a smaller number of uncorrelated variables called principal components (PC). This method allows for the separation of individuals on the basis of differences in their properties and can also be used to evaluate the properties that contribute the most to these separations. The principal components are ordered in terms of the amount of variation in the dataset that they explain such that the first PC explains the largest fraction of the total variance, and so on. There exist a number of methods to determine the number of PC to be retained for a specific analysis. However, none of them uniformly dominates the others. Following a practice largely adopted in the field, we present the first 10 PC computed on this dataset.
text
C1882460 (UMLS CUI [1,1])
C0489829 (UMLS CUI [1,2])
C0871424 (UMLS CUI [1,3])
C1707511 (UMLS CUI [1,4])
C1707520 (UMLS CUI [1,5])
C0871342 (UMLS CUI [2,1])
C0871161 (UMLS CUI [2,2])
C1705241 (UMLS CUI [2,3])
C0220825 (UMLS CUI [2,4])
C0237589 (UMLS CUI [2,5])
C1882460 (UMLS CUI [3,1])
C1947906 (UMLS CUI [3,2])
C1265611 (UMLS CUI [3,3])
C2348152 (UMLS CUI [3,4])
C4553182 (UMLS CUI [3,5])
C0443228 (UMLS CUI [3,6])
C1264664 (UMLS CUI [3,7])
C0025663 (UMLS CUI [4,1])
C1148554 (UMLS CUI [4,2])
C0449961 (UMLS CUI [4,3])
C0936012 (UMLS CUI [4,4])
C1518422 (UMLS CUI [4,5])
C0205375 (UMLS CUI [4,6])
C0870442 (UMLS CUI [4,7])
pc10
Item
Principal component 10: a mathematical tool commonly used in statistical analysis. It seeks to identify an orthogonal coordinate system that transforms a number of possibly correlated variables into a smaller number of uncorrelated variables called principal components (PC). This method allows for the separation of individuals on the basis of differences in their properties and can also be used to evaluate the properties that contribute the most to these separations. The principal components are ordered in terms of the amount of variation in the dataset that they explain such that the first PC explains the largest fraction of the total variance, and so on. There exist a number of methods to determine the number of PC to be retained for a specific analysis. However, none of them uniformly dominates the others. Following a practice largely adopted in the field, we present the first 10 PC computed on this dataset.
text
C1882460 (UMLS CUI [1,1])
C0489829 (UMLS CUI [1,2])
C0871424 (UMLS CUI [1,3])
C1707511 (UMLS CUI [1,4])
C1707520 (UMLS CUI [1,5])
C0871342 (UMLS CUI [2,1])
C0871161 (UMLS CUI [2,2])
C1705241 (UMLS CUI [2,3])
C0220825 (UMLS CUI [2,4])
C0237589 (UMLS CUI [2,5])
C1882460 (UMLS CUI [3,1])
C1947906 (UMLS CUI [3,2])
C1265611 (UMLS CUI [3,3])
C2348152 (UMLS CUI [3,4])
C4553182 (UMLS CUI [3,5])
C0443228 (UMLS CUI [3,6])
C1264664 (UMLS CUI [3,7])
C0025663 (UMLS CUI [4,1])
C1148554 (UMLS CUI [4,2])
C0449961 (UMLS CUI [4,3])
C0936012 (UMLS CUI [4,4])
C1518422 (UMLS CUI [4,5])
C0205375 (UMLS CUI [4,6])
C0870442 (UMLS CUI [4,7])